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ABSTRACT 
New traffic systems and applications require traffic flow information with more detail and higher 
accuracy—specifically, multimodal, all-traffic trajectories. Light detection and ranging (LiDAR) 
sensors are considered and turn out to be a promising high-quality traffic data solution for more 
and more scenarios. There are various LiDAR sensors for mapping, survey, and autonomous 
vehicles. With the consideration of device cost, performance, installation, and maintenance, the 
project mainly used 360-degree LiDAR sensors. Research and field testing of roadside LiDAR at 
UNR has demonstrated that roadside LiDAR is an effective solution for sensing the movements 
of all road users for both permanent deployment and short-term data collection. Based on the 
project team's multiple years of research, deployment, and engineering application expertise, this 
project evaluated the accuracy, reliability, and efficiency of roadside LiDAR sensing and explored 
various traffic scenarios and applications of roadside LiDAR sensors. 

With more and more published research on roadside LiDAR processing algorithms and available 
software solutions, possible roadside LiDAR system or data users need to know the details of 
installation, maintenance, the influence of different weather conditions, and how they can use the 
all-traffic trajectory data to promote engineering tasks, data analysis, and evidence-based decisions. 
These are the project's goals, and study results related to these interest areas are summarized in 
this project report, including: 

1) Roadside LiDAR hardware, software, installation guidance, occlusion impact, and 
influence of weather conditions;  

2) The critical data processing algorithms developed in this project, performance evaluation 
of roadside LiDAR data, and a comparison between LiDAR all-traffic trajectory data and 
video-generated spatial trajectories by the latest video processing AI;  

3) Various applications of roadside LiDAR sensing and LiDAR data, including offline data 
usage, a real-time traffic signal system, and the real-time broadcast of LiDAR trajectory 
data from the roadside systems to connected vehicles.  

This project report provides examples, case studies, and evaluations of these applications. It needs 
to be noted that this project report only lists some of the applications rather than all. Readers' 
innovative thinking will lead roadside LiDAR sensing/data to extensive scenarios to benefit our 
communities' mobility, safety, and energy efficiency. 

 



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

ii 

 

TABLE OF CONTENTS 
Abstract  i ..................................................................................................................................................  

Table of Contents  ii ................................................................................................................................  

List of Figures  iii.....................................................................................................................................  

List of Tables  viii .....................................................................................................................................  

1. Introduction  1 ....................................................................................................................................  

2. Roadside LiDAR System Components 4.......................................................................................  

3. Installation Height and Tilt Angle  8 ................................................................................................  

4. Occlusion and Traffic Flow 26 ........................................................................................................  

5. Weather Conditions and Roadside LiDAR Data 35 ......................................................................  

6. Improved LiDAR Processing Algorithms 45 .................................................................................  

6.1 Improved Background Filtering  45 .....................................................................................................  

6.2 Improved Object Classification 53 .....................................................................................................  

7. Data Quality Evaluation and Comparison with Video Sensing  57 .............................................  

8. Traffic Performance Measurement with LiDAR Data  68 ..............................................................  

9. Automatic Rectangular Rapid Flashing Beacon (RRFB) with LiDAR Sensing  84 ...................  

10. Roundabout Capacity Calibration with LiDAR Data  97 ...............................................................  

11. Automatic Vehicle-Pedestrian Yield Rate Analysis with LiDAR  107 ..........................................  

12. Analysis of Wildlife Crossing Events Impacting Traffic with LiDAR  118 ..................................  

13. Automatic Count Trip Generation with LiDAR  124......................................................................  

14. Connected and Autonomous Vehicles  133 ...................................................................................  

15. Conclusion  145 .................................................................................................................................  

Reference  146 ..........................................................................................................................................  
 



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

iii 

 

LIST OF FIGURES 
Figure 2-1. Hardware components of a roadside LiDAR sensing deployment  4..................  
Figure 2-2 Demonstration of different roadside LiDAR sensing deployment  5.....................  
Figure 2-3 Locations of LiDAR sensors and traffic signal cabinet at S Boulder Hwy and 

Texas Ave  6 ................................................................................................................................  
Figure 3-1. Laser beams of LiDAR sensor .  9..............................................................................  
Figure 3-2. Example of two undetectable scenarios  11............................................................  
Figure 3-3. Geometric demonstration of laser beams with/without LiDAR inclination  12....  
Figure 3-4. Geometric demonstration of rotating laser beams with inclined LiDAR sensor

 12.................................................................................................................................................  
Figure 3-5. Angle variation with horizontal and inclined LiDAR sensor  15 .............................  
Figure 3-6. Demonstration of object detection with consideration of occlusion  16...............  
Figure 3-7. Installation position test in a parking lot  17.............................................................  
Figure 3-8. Heatmaps of Puck LiDAR sensor (horizontal installation)  18 ..............................  
Figure 3-9. Heatmaps of Puck LiDAR sensor (inclined installation: -1o and 0o)  19...............  
Figure 3-10. Heatmaps of Puck LiDAR sensor (inclined installation: +1o and +2o)  20 .........  
Figure 3-11. Heatmaps of Puck Hi-Res and Ultra Puck LiDAR sensors (inclined 

installation)  21............................................................................................................................  
Figure 3-12. LiDAR installed for vertical scan  22 .......................................................................  
Figure 3-13. Calculated scan locations of the ceiling surface by a Puck LiDAR sensor 

(vertical installation)  23 .............................................................................................................  
Figure 3-14. Demonstration of Puck sensor’s detection performance considering 

occlusion  25................................................................................................................................  
Figure 4-1. Traffic occlusion scenarios demonstration  26 ........................................................  
Figure 4-2 Flowchart of vehicle occlusion classification  28......................................................  
Figure 4-3 Simulation of traffic flow  29 .........................................................................................  
Figure 4-4 ITS trailer equipped with two LiDAR sensors  33 .....................................................  
Figure 5-1. LiDAR Point Clouds under Different Weather Conditions  35 ...............................  
Figure 5-2. Distance Measurement Concept  36 .........................................................................  
Figure 5-3 Offset Plot of Normal Condition  37............................................................................  
Figure 5-4 Offset Plot of Snowy Condition  37 .............................................................................  
Figure 5-5 Offset Plot of Rainy Condition  38 ...............................................................................  
Figure 5-6 Offset Standard Deviation of Normal, Snowy, and Rainy Conditions 38 ............  
Figure 5-7 Percentile Values of Standard Deviation  39............................................................  
Figure 5-8 DIFFSUM Results of Normal, Snowy, and Rainy Conditions  40 ..........................  
Figure 5-9. Offset Standard Deviation of Normal and Windy Conditions  41..........................  
Figure 5-10 Box Chart of DDOW between Vertical Surface and Horizontal Surface under 

Windy Condition  42 ...................................................................................................................  
Figure 5-11 Median Value of DDOW for Normal and Three Wind Speed  43........................  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

iv 

 

Figure 5-12 DDOW results between Normal and Windy Weather Conditions on Horizontal 
Surface  43 ...................................................................................................................................  

Figure 5-13 Flow Chart of Identification Method  44...................................................................  
Figure 6-1 A 3D matrix representing LiDAR data  47 .................................................................  
Figure 6-2 A 2D table representing LiDAR data  47 ....................................................................  
Figure 6-3 Flowchart of the improved background filtering method  48...................................  
Figure 6-4 Examples of background distance measurement  49 ..............................................  
Figure 6-5 Demonstration of two different dynamic background measurements  50 ............  
Figure 6-6 Flowchart of background table generation .  51.........................................................  
Figure 6-7. Examples of different road user clusters collected by 32-laser roadside LiDAR 

sensor  53.....................................................................................................................................  
Figure 6-8. Features extracted from clusters  54.........................................................................  
Figure 7-1 LiDAR and camera sensors installed at the same intersection (Pyramid Way 

and Los Altos Road, Sparks, NV)  57......................................................................................  
Figure 7-2 Daytime (left) and nighttime (Right) trajectory overview  58 ...................................  
Figure 7-3 Detection zones for counting the volume 59 ............................................................  
Figure 7-4 Volume Count Accuracy for Daytime Volume (Dec 24th 12:00pm - 12:30pm)

 59.................................................................................................................................................  
Figure 7-5 Volume count accuracy for nighttime (Dec 24th 3am - 3:30am)  60 .....................  
Figure 7-6 Lidar vehicle detection rate for each bound (12/23/2020 12:00 pm to 12:30 pm)

60.................................................................................................................................................  
Figure 7-7 Lidar vehicle detection rate for each bound (12/24/2020 3:00 am to 3:30 am)

 61.................................................................................................................................................  
Figure 7-8 Camera vehicle detection rate for each bound (12/23/2020 12:00 pm to 12:30 

pm)  61 ..........................................................................................................................................  
Figure 7-9 Cameras Detection Range for each Bound (12/24/2020 3:00 am to 3:30 am)

 62.................................................................................................................................................  
Figure 7-10. Pedestrian crossing trajectories captured by Lidar(green) and Camera (Red)

 63.................................................................................................................................................  
Figure 7-11 Same Vehicle trajectories captured by LiDAR (left) and computer vision (right)

 64.................................................................................................................................................  
Figure 7-12 Speed of the sample vehicle calculated based on trajectory location  64. ........  
Figure 7-13 Smoothed speed of the sample vehicle  65 ............................................................  
Figure 7-14 Sample pedestrian speed .  65...................................................................................  
Figure 7-15 Sample pedestrian trajectories captured by LiDAR (left) and Camera (Right)

 66.................................................................................................................................................  
Figure 8-1. Deployed portable LiDAR sensing equipment at the intersection  69 ..................  
Figure 8-2 Sample of half-hour geo-located trajectories and traffic study zones from 

LiDAR data collection  70 ..........................................................................................................  
Figure 8-3 AM peak hourly volumes of all movements  71 ........................................................  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

v 

 

Figure 8-4 PM peak hourly volumes of all movements  71 ........................................................  
Figure 8-5 Daily traffic volumes of all movements  72 ................................................................  
Figure 8-6 Southbound through-lane half-hour traffic volume change  72 ..............................  
Figure 8-7 Northbound through traffic speed study  73 ..............................................................  
Figure 8-8 Comparison of northbound and southbound geometric elements that may have 

helped to reduce the southbound traffic speeds  74.............................................................  
Figure 8-9 Number of vhicles in different average speed ranges –  all northbound through 

vehicles  75..................................................................................................................................  
Figure 8-10 Pedestrian volume counting zones and their daily volumes  75 ..........................  
Figure 8-11 Half-hour pedestrian and bike volumes at the west crosswalk, north-south 76 
Figure 8-12 Half-hour pedestrian and bike volumes at the northwest sidewalk, north-south

 76.................................................................................................................................................  
Figure 8-13 Half-hour pedestrian and bike volumes at the north crosswalk, east-west  77 .  
Figure 8-14 Half-hour pedestrian and bike volumes at the northwest corner, east-west 77 
Figure 8-15 Pedestrians crossing Calle De La Plata at 08/29/2020 12:00-12:30PM (east 

of the intersection)(light blue means pedestrian crossing trajectories)  78 .......................  
Figure 8-16 Pedestrians crossing Calle De La Plata at 08/29/2020 2:00-2:30 PM (east of 

the intersection)(light blue means pedestrian crossing trajectories)  78 ............................  
Figure 8-17 The suspected near-crash event that was confirmed as not near-crash in GIS

 81.................................................................................................................................................  
Figure 8-18 Example of conflict events identified from LiDAR data at N Boulder Hwy and 

Coogan Dr – LiDAR trajectories  81 ........................................................................................  
Figure 8-19 Example of conflict events identified from LiDAR data at N Boulder Hwy and 

Coogan Dr – video screenshot  82 ..........................................................................................  
Figure 8-20 Sample of activities at the northeast corner and southeast corner at the 

intersection, 08/28/2020 7:00 PM  83 ......................................................................................  
Figure 9-1 Aerial map of Green Valley Pkwy and Amargosa Trail  84 .....................................  
Figure 9-2 Street view of Green Valley Parkway (facing north)  85 ..........................................  
Figure 9-3 Locations of LiDAR sensors and LiDAR processing cabinet at Green Valley 

Pkwy and Amargosa Trail  87 ...................................................................................................  
Figure 9-4 Pictures of the LiDAR sensors and the processing cabinet at Green Valley 

Pkwy and Amargosa Trail  88...................................................................................................  
Figure 9-5 Sample LiDAR cloud points from the LiDAR sensors at Green Valley Pkwy 

and Amargosa Trail  88 ..............................................................................................................  
Figure 9-6 Flow chart of LiDAR automatic RRFB control logic  91 ...........................................  
Figure 9-7 Configured crossing event zones for triggering RRFB flashing, on Google 

Aerial Map and LiDAR cloud points  91..................................................................................  
Figure 9-8 Illumination of a false turn-on event example 93 .....................................................  
Figure 9-9 Illumination of a missed turn-on event example  93................................................  
Figure 9-10 Illumination of a missed turn-off event example  94..............................................  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

vi 

 

Figure 9-11 System layout during the field test  95.....................................................................  
Figure 9-12 Locations where RRFB automatically start flashing if buttons are not used 96 
Figure 9-13 Daily distribution of crossing events at Green Valley Pkwy and Amargosa 

Trail  96 .........................................................................................................................................  
Figure 10-1 Vehicle Trajectories and ArcGIS Detection Zones  99 ..........................................  
Figure 10-2 (left) Study Roundabout and LiDAR Locations and (right) Georeferenced 

LiDAR trajectory Results 101 ...................................................................................................  
Figure 10-3 Case Study Sample Trajectories and Detection Zones 102 ................................  
Figure 10-4 Raff’s Method Cumulative Distribution Plot for the Inner Lane  104 ...................  
Figure 10-5 Raff’s Method Cumulative Distribution Plot for the Outer Lane  105 ..................  
Figure 10-6 Capacity Equation Curves from the Study, HCM, and Nevada Calibrations

106...............................................................................................................................................  
Figure 11-1 Vehicle and Pedestrian Trajectories and Detection Zones 109..........................  
Figure 11-2 Threshold-Based Method for Extracting Vehicle-Pedestrian Yield Data 111 ...  
Figure 11-3 Study Mid-Block Crosswalk and LiDAR Location  113 ..........................................  
Figure 11-4 Speed vs TDTC plot  114 ...........................................................................................  
Figure 11-5 Filtered Speed vs TDTC plot 115............................................................................  
Figure 11-6 Logistic Regression Curve for Model 5 117 ...........................................................  
Figure 11-7 Logistic Regression Curve for Model 6 .  117..........................................................  
Figure 12-1 Crossing zone and waiting zone for crossing event.  119.....................................  
Figure 12-2 Five-phase diagram about how to determine if a vehicle i is yield to wild horse 

 120j ..............................................................................................................................................  
Figure 12-3 Trailer for data collection(left) and Top view of the site and the location of the 

LiDAR (Right) .  121.....................................................................................................................  
Figure 12-4 30-min Volume for each bound 121........................................................................  
Figure 12-5 Crossing time over number of horses for each crossing event  122...................  
Figure 12-6 Example Crossing event (11/18/2019 3:11PM)  123 .............................................  
Figure 13-1. The location of the studied gas station/store (a), and the utilized LiDAR 

equipment installed in the northern part of the gas station/store (b)  126 ..........................  
Figure 13-2. Twenty-four hours data visualization for Ent1 (a) for vehicles (b) for 

pedestrians  128 ..........................................................................................................................  
Figure 13-3. The entering and exiting trips at the Holcomb Ave drive way  129 ....................  
Figure 13-4. The entering and exiting trips at the Burn St drive way  129 ...............................  
Figure 13-5. The entering and exiting trips at the Virginia St drive way  130 ..........................  
Figure 13-6 Gas pumps at the studied gas station  131 .............................................................  
Figure 13-7. The Gas Pump’s Usage for Six pumps(a), The Peak Hour Pump Usage(b)

 131...............................................................................................................................................  
Figure 13-8. The percentage of Vehicles out of Total Number of Travelers in the Gas 

station(a) The percentage of Pedestrians out of Total Number of Travelers in the Gas 
station(b) 132 ..............................................................................................................................  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

vii 

 

Figure 13-9. GIS Trajectory for Pedestrians and Vehicles Based on LiDAR Data  132 ........  
Figure 14-1. DBCMA-LS system structure  134 ...........................................................................  
Figure 14-2. Modules in the DBCMA-LS RSU framework  135 .................................................  
Figure 14-3. Modules of DBCMA-LS OBU framework  136 .......................................................  
Figure 14-4. Implementation of the pilot DBCMA-LS RSU framework  138 ............................  
Figure 14-5. Implementation of the DBCMA-LS OBU framework on an Android device

 140...............................................................................................................................................  
Figure 14-6. End-to-end packet delays of DBCMA-LS with different packet interval and 

size  141.......................................................................................................................................  
Figure 14-7. End-to-end packet-dropping probabilities with different packet interval and 

size  142.......................................................................................................................................  
Figure 14-8. End-to-end optimal equivalent packet delays of DBCMA-LS  143.....................  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

viii 

 

LIST OF TABLES 
 

Table 3-1. Specifications of three selected LiDAR sensors  10 ................................................  
Table 3-2. Detection Range of LiDAR Sensors (Horizontal Installation)  17 ...........................  
Table 3-3. Validation for Scan Location Calculation  23.............................................................  
Table 3-4. Detection Range of Puck LiDAR Sensor Considering Occlusion  24 ....................  
Table 4-1 Vehicle occlusion results using a single 16-laser LiDAR sensor  30 ......................  
Table 4-2 Vehicle occlusion results using two 16-laser LiDAR sensors  31...........................  
Table 4-3. Vehicle occlusion results using a single 32-laser LiDAR sensor  31.....................  
Table 4-4. Vehicle occlusion results using two 32-laser LiDAR sensors  32..........................  
Table 4-5. Validation of partial occlusion results from site 1  33...............................................  
Table 4-6. Validation of partial occlusion results from site 2  34...............................................  
Table 5-1 Data Analysis of DDOW between Vertical Surface and Horizontal Surface 

under Windy Condition  41........................................................................................................  
Table 6-1. Filtering Results Evaluation for Target Objects at Different Distances  52..........  
Table 6-2. Classification recall rates considering historical trajectory information  56..........  
Table 7-1 Reference table for LiDAR-based and Vision-based trajectory data  67...............  
Table 8-1 Summary of Traffic Conflict/Near-Crash Indicators  79............................................  
Table 9-1 Equipment List for Green Valley Pkwy and Amargosa Trail  85.............................  
Table 9-2 RRFB Button Usage at the Crosswalk of Green Valley Pkwy and Amargosa 

Trail  90 .........................................................................................................................................  
Table 9-3. Off-line test based on four types of errors (845 crossing events)  92...................  
Table 10-1 Comparison of the Total Number of Headways from Code and Actual for the 

Inner Lane  103...........................................................................................................................  
Table 10-2 Comparison of the Total Number of Headways from Code and Actual for the 

Outer Lane  103...........................................................................................................................  
Table 10-3 Critical Headway and Follow-up Headway  105......................................................  
Table 11-1 Yield counts and yield compliance  115 ....................................................................  
Table 11-2 Logistic Regression Model Results  116...................................................................  
Table 12-1 Wild horse crossing events captured from LiDAR  122..........................................  
Table 12-2 Yield rate for each crossing event  123.....................................................................  
Table 14-1. Basic Parameters of LiDAR Sensor for DBCMA-LS  138.....................................  
Table 14-2. Data Dictionary from LiDAR  139..............................................................................  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

1 

 

1. INTRODUCTION 
Existing traffic data, such as flow rates, occupancy, average speed, and spot speed, have been 
widely used for traffic mobility and safety. Yet new traffic systems and applications require traffic 
flow information with more detail and higher accuracy—specifically, multimodal, all-traffic 
trajectories. All-traffic trajectory data from either traveler-equipped or roadside sensors is critical 
to various traffic research/engineering areas, including but not limited to: 

• Connected and autonomous vehicles (CAVs): At present, independent onboard sensing 
systems do not provide enough information for safe operation in multimodal traffic. 
Autonomous vehicles need to obtain the locations and movements of all road users and 
obstacles in extended distances and need to "see" around corners. 

• Near-crash analysis: Near-crash events provide essential data for proactive safety analysis 
and countermeasure recommendations, but this data is challenging to obtain. When all-
traffic trajectory data is available, interactions of vehicles and vulnerable road users can be 
studied at multiple scales to identify traffic safety issues and recommend countermeasures 
before crashes happen. 

• Traffic performance evaluation/adaptive traffic signal control: All-traffic trajectories 
provide comprehensive information to evaluate traffic performance. Trajectory data reports 
each road user's stop location, stop time, speed change, interaction with other road users, 
and conventional vehicle-traffic performance indices such as the number of stops, delay, 
travel time, and queue length. Using traditional traffic sensors, optimizing signals along a 
road is challenging because system details cannot be accurately observed. Real-time, all-
traffic trajectory data can make the traffic system completely observable, thus 
revolutionizing adaptive traffic control and outperforming conventional systems. 

• Automatic pedestrian/wildlife-crossing warning signals: An important application of 
real-time all-traffic trajectories is monitoring and predicting vehicle-pedestrian conflicts 
on urban roads or vehicle-wildlife collision risks on rural highways. Trajectory data tracks 
the continuous movement of each road user, so crossing detection and prediction can be 
accurate and reliable with real-time direction/speed/location for superior accuracy and 
reliability.        

Trajectories can be collected by probe vehicles or connected vehicles, but this provides only 
sample vehicle trajectories due to low penetration rates. From the roadside traffic sensing 
perspective, existing Intelligent Transportation Systems (ITS) employ loop detectors, video 
detectors, radar, and Bluetooth sensors for traffic measurement, mainly macro traffic data such as 
traffic flow rates, spot speeds/average speeds, and occupancy. Although conventional video 
sensors measure only the average speeds of vehicles that cross their detection zones, new video 
processing methods combine two or more cameras to measure distance. However, the accuracy of 
video sensing can be significantly influenced by low-light conditions. Recent research 
demonstrated the possibility of tracking vehicles with radar. Current low-cost radar sensors have 
difficulty detecting and tracking pedestrians near vehicles, while high-resolution radar sensors are 
much more expensive than other traffic sensors, including LiDAR. 
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Given the limitations of existing traffic sensors, light detection and ranging (LiDAR) sensors 
attract more interest for roadside traffic monitoring and tracking. The project team has developed 
dedicated data processing algorithms for roadside LiDAR sensing systems. This project evaluated 
the accuracy, reliability, and efficiency of roadside LiDAR sensing and explored various traffic 
scenarios and applications of roadside LiDAR sensors. 

A LiDAR instrument principally consists of a laser, a scanner, and a specialized GPS receiver. It 
creates 360-degree 3D point clouds representing the surrounding environment in real-time by 
rapidly spinning laser beams mounted in a compact housing. Advanced digital signal processing 
and waveform analysis provide high accuracy, extended distance sensing, and calibrated 
reflectivity data. The working principle of LiDAR is that when the laser beam emitted by LiDAR 
hits an object, the laser energy is reflected and received by the LiDAR receiver. The object can be 
located by combining the laser beam's direction and the time difference between the emitted and 
received laser beams. With a 360-degree horizontal FoV and a 40-degree vertical FoV, LiDAR 
provides each object's three-dimensional information in the point cloud.  

LiDAR can scan objects in 3-dimensional (3D) space and report their locations accurately under 
different illumination conditions, which is a major advantage over video cameras [1]. In addition, 
the data collected by LiDAR sensors are point clouds (i.e., massive sets of points), which require 
lower processing computation than image/video data (i.e., pixel information) of cameras.  

There are various LiDAR sensors for mapping, survey, and autonomous vehicles. Considering the 
cost, performance, installation, and maintenance, we used 360-degree LiDAR in this project and 
in most of our roadside LiDAR systems. Research and field testing of roadside LiDAR at UNR 
has demonstrated that roadside LiDAR is an effective solution for sensing the movements of all 
road users for both permanent deployment and short-term data collection. 

LiDAR data processing and high-resolution trajectory extraction are the fundamental functions of 
roadside LiDAR sensing systems. Data background filtering, object clustering, object 
classification, and real-time object movement tracking are required to process LiDAR data. Due 
to sensor installation and data characteristics, methods for processing roadside LiDAR data differ 
from solutions for autonomous vehicles. A roadside sensing system can include a network of 
LiDAR sensors, and the spatial data can be easily integrated. For the same sensor type, the density 
of cloud points from roadside LiDAR is often lower than what onboard LiDAR processing 
algorithms require because of the extended detection distance needed by roadside sensing systems. 

With more and more published research on roadside LiDAR processing algorithms and available 
software solutions, possible roadside LiDAR system or data users need to know the details of 
installation, maintenance, influence of different weather conditions, and how they can use the all-
traffic trajectory data to promote engineering tasks, data analysis, and evidence-based decisions. 
These are the project's goals, and study results related to these interest areas are presented in this 
project report. Chapter 2 – Chapter 5 are about roadside LiDAR hardware, software, installation 
guidance, occlusion impact, and influence of weather conditions, which can be more beneficial for 
the readers performing or managing fieldwork. Chapter 6 – Chapter 7 present two critical data 
processing algorithms developed during this project, performance evaluation of roadside LiDAR 
data and a comparison between LiDAR all-traffic trajectory data and video-generated spatial 
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trajectories by the latest video processing AI. The two chapters can be a reading focus for the 
audiences interested in data processing and data quality. Chapter 8 – Chapter 14 introduce various 
applications of roadside LiDAR sensing and LiDAR data, including offline data usage, a real-time 
traffic signal system, and the real-time broadcast of LiDAR trajectory data from the roadside 
systems to connected vehicles. Therefore, these seven chapters provide examples, case studies, 
and evaluations of these applications. It needs to be noted that this project report only lists some 
of the applications rather than all. Readers' innovative thinking will lead roadside LiDAR 
sensing/data to extensive scenarios to benefit our communities' mobility, safety, and energy 
efficiency. 
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2. ROADSIDE LIDAR SYSTEM COMPONENTS 
A roadside LiDAR traffic sensing system typically includes hardware components of LiDAR 
sensor(s), data processing unit, communication devices, data storage (if field data log is needed), 
power supply & power distribution unit, and equipment enclosure housing all devices except the 
LiDAR sensors. An example of components of a roadside LiDAR sensing system deployed at N 
Boulder Hwy and Coogan Dr, Henderson, NV, is presented in Figure 2-1. 

 
Figure 2-1. Hardware components of a roadside LiDAR sensing deployment 

Determined by the sensing system functions, LiDAR sensors can be installed permanently on 
traffic signal or street light poles at intersections or midblock, semi-permanently on an ITS trailer 
for freeway or rural area deployment, short-term deployment for days, or short-term deployment 
for peak hours only, as shown in Figure 2-2. 
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Figure 2-2 Demonstration of different roadside LiDAR sensing deployment 

For a permanent installation, two to four LiDAR sensors are suggested. Based on the project team's 
test, LiDAR sensors with 32 or more channels (laser beams) are preferred, which provide the 
required effective sensing range for most scenarios. 360-degree LiDAR sensors are often installed 
3-4 meters above the ground, and directional LiDAR sensors are normally installed on the traffic 
signal arms at intersections. A recommended installation location for 360-degree LiDAR at a 
signalized intersection is on top of the pedestrian signal heads. A more comprehensive analysis of 
LiDAR installation's influence on sensing performance is introduced in Chapter 3. Sensors at 
opposing corners of the intersection can minimize occlusions caused by large vehicles. It is 
essential for safety-related functions of real-time traffic signal systems or connected-autonomous 
vehicle systems taking the roadside LiDAR input. A detailed analysis of the relationship between 
sensor installation and occlusion is documented in Chapter 4. The deployment of sensors at an 
intersection may need to be adjusted for its dimensions and existing underground conduits. For 
example, the pilot deployment at Texas Ave and Boulder Hwy, Henderson, NV, installed sensors 
at the northeast intersection corner and a median to avoid wiring distance longer than 100 meters, 
the maximum data transmission distance of ethernet cable without a signal repeater. Locations of 
LiDAR sensors and the traffic signal cabinet are shown in Figure 2-3.  

Communication, software, and maintenance 

A data logging software developed was also developed in this project and installed on the edge 
computer for receiving LiDAR data from the sensors and saving data to external hard drives. The 
software created a pcap data file for each sensor's half-hour LiDAR data. When running 24/7, 32-
channel LiDAR sensors generate a large amount of data; each Veloydne vlp-32c sensor generates 
about 1T of data per week. The project team researched various data compression algorithms to 
compress raw LiDAR data. The implemented data compression function can reduce a LiDAR data 
file to 1/3-1/8 of the original size. A real-time sensing and tracking software, developed by UNR, 
was also installed on the edge computers that can receive and process two sensors' data in real-
time (10 HZ of each LiDAR data frame frequency) 
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The project tested three communication solutions: fiber, high-speed microwave communication, 
and the 5G data connection. Only the fiber connection could provide reliable communication to 
send raw LiDAR cloud points from the roadside sensing system to a UNR data center. However, 
communication of raw LiDAR data through a city traffic fiber network may cause concern for 
some agencies for the possible influence on regular traffic data communication. The raw data 
communication is more challenging when there is a network of LiDAR sensors. Therefore, cloud-
based or central processing of raw LiDAR data, the roadside unit sending raw LiDAR data to a 
remote server for data processing and then receiving the processing results, is not recommended 
for extended deployments of roadside LiDAR sensors. 

 
Figure 2-3 Locations of LiDAR sensors and traffic signal cabinet at S Boulder Hwy and 

Texas Ave 

The high-speed microwave communication can provide enough bandwidth for LiDAR data 
communication but is often unstable or stopped when transferring the data 24/7. 5G data 
connection is expensive for real-time communication of raw LiDAR data, and communication was 
slowed sometime during our tests. However, all three communication solutions - fiber, microwave, 
and LTE/5G- were successfully used to monitor the edge system's health remotely. The project 
developed a software program on the edge computer that monitors the hardware and software 
health and sends system status or alert messages to the operators through an LTE/5G connection. 

The maintenance effort includes monitoring the system's health through received system status 
messages and alerts. The LiDAR sensors also need to be cleaned; when the LiDAR glass surface 
is dirt, the LiDAR data quality and detection range can be reduced. The local weather and 
environment determine the cleaning frequency. UNR developed a software program to monitor 
LiDAR sensor data quality to warn operators when the sensor needs maintenance or cleaning. 

The project team originally developed software programs for the Windows operation system, as 
agency engineers and technicians are more comfortable operating Windows configuration and 
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software. However, Windows automatic system updates often caused the edge computer to restart 
during multiple pilot deployments, even though the project team turned off its automatic update. 
A scheduled system update is needed when using Windows OS and software. Later, the project 
team switched to the Linux system and re-programmed the related software. The system was 
configured to automatically start the logging, processing, and system monitoring software 
programs when being turned on, without operation by technicians or engineers. 
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3.  INSTALLATION HEIGHT AND TILT ANGLE 
Currently, guidance for roadside LiDAR installation cannot be found in manufacturers' manuals. 
For agencies or other institutes to consider roadside LiDAR sensing deployment and systems, it is 
urgent to develop knowledge and guidance about selecting and installing LiDAR sensors on the 
infrastructure side for better traffic detection performance. As a part of this project, a study was 
performed to identify the roadside sensor installation's impact on the scanning range and quality. 
The project team first conducted a theoretical study to analyze the best installation strategy, 
including location, height, and tilt angle. Then three commonly used 360-degree LiDAR sensor 
models were tested in the field under different height and inclination settings (with/without 
considering occlusion) to examine the theoretical results. At last, installation recommendations of 
single and multiple LiDAR sensors at a selected road segment were provided in a case study.        

Based on the mechanical structure and operational principle of LiDAR sensors, laser beams are 
rotated 360-degree along the sensor's central axis to form a series of conical surfaces for each scan. 
Each laser channel is fixed at a specific elevation angle relative to the sensor's central axis for a 
specific model. As an example in Figure 3-1, two laser beams generate two conical surfaces 
independently. Laser channels can be divided into two groups: the lasers with a positive elevation 
angle (a1) and the lasers with a negative angle (a2). The perpendicular direction of the sensor's 
central axis is zero-degree. In addition, the density of LiDAR point clouds is varied with the 
distance to the LiDAR sensor. An object near the LiDAR sensor generates intensive laser scan 
points and gets fine details of its surface shape; the same object only gets sparse scan points when 
it is far away from the sensor.  
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Figure 3-1. Laser beams of LiDAR sensor 

LiDAR Built-in Features 

LiDAR sensors' primary features and specifications include the number of channels, the vertical 
field of view (FOV), the vertical resolution of laser beams, the horizontal FOV, and the horizontal 
resolution of each laser beam. Their definitions are summarized as follows: 

1) Channel: laser beam, a pair of laser emitter and receiver. 
2) Vertical FOV: sensor's vertical sensing scope in degrees. 
3) Vertical Resolution: vertical angle between adjacent laser beams in degrees. 
4) Horizontal FOV: sensor's horizontal sensing scope in degrees; it is 360 degrees for 360-

degree rotating LiDAR and can be 30-110 degrees for solid-state LiDAR. 
5) Horizontal Resolution: horizontal angle in degrees between adjacent emission directions 

of the same laser channel; it can be converted to the number of scanning points generated 
by a laser beam during one rotation. 

In general, the more laser channels, the more data points can be collected. The vertical FOV is 
determined by the number of channels and the vertical resolution of the laser beams. Table 3-1 
lists the main features of three 360-degree LiDAR sensors from Velodyne company. Puck and 
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Puck Hi-Res LiDAR sensors have 16 laser channels, and the vertical angle between adjacent laser 
beams is fixed. The Ultra Puck LiDAR sensor has 32 laser beams, and the distribution of laser 
beams' vertical resolutions is non-linear..  

Table 3-1. Specifications of three selected LiDAR sensors 

Name Channels Vertical 
FOV Vertical Resolution Measurement 

Range 
Rotation 

Frequency 

Puck  

(VLP-16) 
16 

−15° to +15° 
（30°） 

linear distribution 

 (2°) 
100m 5-20Hz 

Puck Hi-Res 16 
−10° to +10° 
（20°） 

linear distribution  

(1.33°) 
100m 5-20Hz 

Ultra Puck 

(VLP-32C) 
32 

−25° to +15° 
（40°） 

Non-linear distribution 

(0.33° for −4° to +1.33° FOV; 

Others are non-linear) 

200m 5-20Hz 

 

LiDAR Installation Position 

The sensor installation plays a pivotal role in determining the LiDAR's sensing range. Depending 
on the sensing objective, LiDAR sensors can be temporarily installed on a tripod for short-term 
data collection or permanently mounted on roadside infrastructures for long-term data collection 
and real-time traffic sensing. The effective sensing range of a LiDAR sensor is determined by the 
installation location and position, vertical FOV, horizontal FOV, vertical resolution, horizontal 
resolution, and the maximum sensing distance of a laser beam (determined by the power of the 
laser and sensitivity of its receiver), and the minimum dimensions of sensing targets. The 
installation height and inclination are the two most influential factors when a sensor is selected. 

The installation height refers to the vertical distance between the LiDAR sensor and the ground 
surface. Regarding the occlusion issue, LiDAR sensors installed at a higher position minimize the 
occlusion impact; however, there is an undetectable area under the LiDAR sensor (blind area) 
caused by the vertical FOV, and a higher installation position leads to an extended blind area under 
the sensor. Figure 3-2 illustrates a LiDAR sensor (N = 8 channels, θ vertical field of view, and 
fixed vertical resolution of laser beams) installed at the height of H above the ground. If the vertical 
angle of the lowest laser beam relative to the sensor's central axis is γi, then the farthest detection 
location of this laser beam is H × tan γi. The laser beams with positive angles can reach the 
maximum sensing distance claimed by the sensor manufacturer. In contrast, the detection range of 
the negative laser beams is H × (tan γj - tan γi), where the smallest and the largest vertical angle 
of negative laser beams are γi and γj, respectively. A target object within the sensor's detection 
range may not be detected when its heigh is lower than the lowest laser beam, as demonstrated by 
the first "undetectable" pedestrian in Figure 3-2. This pedestrian is actually in the blind area of the 
sensor. A LiDAR sensor may also fail to detect an object when the object is between two adjacent 
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laser beams without being hit by any laser channel, as the second undetectable pedestrian in Figure 
3-2. This second failure scenario can be avoided when using a sensor with a high vertical resolution. 

 
Figure 3-2. Example of two undetectable scenarios 

A LiDAR sensor can be installed at any inclination angle. When it is placed on a horizontal plane, 
the sensor's central axis is perpendicular to the horizontal plane. Since all the laser beams are 
rotated along the sensor's central axis, the effective sensing distance is the same for different 
directions. As shown in Figure 3-3 (a), the angle of the laser beam (AB or AC) relative to the 
horizontal plane is equal to α during the 360° scan. If we place a LiDAR sensor on a slope, the 
sensor's central axis is vertical to the slope's surface. During the 360° scan, the same laser beam's 
scanning distance is different along with different sensor directions. The detection range reduces 
along the sensor's inclination direction. In Figure 3-3 (b), a LiDAR sensor is titled for b degree 
relative to the vertical plane, and the sensing range changes to α+β and α−β at 0° and 180° 
orientations, respectively. 

The following is a theoretical derivation of the relationship between the laser beam’s angle relative 
to the horizontal plane and the target object’s direction for an inclined LiDAR sensor. In Figure 3-
4, point A is the center of a LiDAR sensor. AX is the sensor’s central axis, with a relative 
inclination angle of  𝛽𝛽 to the vertical line AE (AE is perpendicular to the horizontal plane). A laser 
beam AB reaches AC after horizontally rotating 𝜃𝜃 degrees (assume the lengths of AB and AC are 
equal to R). The angle 𝛾𝛾 of the laser beam AB (or AC) relative to the AX is pre-defined by the 
LiDAR’s specification. 
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Figure 3-3. Geometric demonstration of laser beams with/without LiDAR inclination 

 
Figure 3-4. Geometric demonstration of rotating laser beams with inclined LiDAR sensor 

Given: AB = AC = R (the length of laser beams) 
            ∠XAE = 𝛽𝛽 (LiDAR’s inclination angle relative to the vertical line) 
            ∠XAB = ∠XAC = γ (the angle of laser beams relative to the sensor’s central axis) 
            ∠BAC = 𝜃𝜃 (laser beam’s rotation angle) 
Find: 1) ∠ACI (the angle of the laser beam AC relative to the horizontal plane) 
          2) ∠DEB (the angle formed by projecting rotation angle 𝜃𝜃 to the horizontal plane) 
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In order to solve the above problem, we added several auxiliary lines: reversely extend BE 

to the sensor’s central axis at point X; project point C to the horizontal plane as point D; CI is 
perpendicular to AE; connect XC, EB, ED, BC, and BD. Note that ∆EBD is the projection of 
∆ABC on the horizontal plane. Based on the spatial geometry, the angle of the laser beam AB 
relative to the horizontal plane can be defined, which is: 
𝛼𝛼 = ∠ABE = 90° −∠EAB = 90° − �∠XAB −∠XAE� = 90° − γ + β                         (Eq.3-1) 
 
Calculate ∠ACI 
In Rt ∆AEB, 𝐴𝐴𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛼𝛼,𝐵𝐵𝐴𝐴 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝛼𝛼                       
In Rt ∆AEX, 𝑋𝑋𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑅𝑅𝛽𝛽 
In ∆XBC, 𝑋𝑋𝑋𝑋 = 𝑋𝑋𝐵𝐵 = 𝑋𝑋𝐴𝐴 + 𝐵𝐵𝐴𝐴 
In ∆ABC, 𝐵𝐵𝑋𝑋 = 2𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝜃𝜃) 

2

In ∆XBC, ∠CXBcos � � = 𝐵𝐵𝐵𝐵/2 
2 𝑋𝑋𝐵𝐵

In ∆XEC, cos� CXB� = cos� CXE� = 𝑋𝑋𝐵𝐵2+𝑋𝑋𝑋𝑋2−𝑋𝑋𝐵𝐵2∠ ∠  
2𝑋𝑋𝐵𝐵∙𝑋𝑋𝑋𝑋

𝐴𝐴𝑋𝑋2+𝐴𝐴𝐵𝐵2−𝑋𝑋𝐵𝐵2In ∆EAC, cos�∠EAC� =  
2𝐴𝐴𝑋𝑋∙𝐴𝐴𝐵𝐵

In Rt ∆AIC, ∠ACI = 90° −∠EAC 

Therefore, ACI = 90° − arccos (cos(γ − β) − tanβ �2 − 1−𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃∠ �)
cos(𝛾𝛾−𝛽𝛽)       (Eq. 3-2) 

𝑡𝑡𝑡𝑡𝑡𝑡𝛽𝛽+sin (𝛾𝛾−𝛽𝛽)
 
Calculate ∠DEB               
In Rt ∆AEX, 𝐼𝐼𝐴𝐴 = 𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐼𝐼 = 𝐴𝐴𝐴𝐴 − 𝐴𝐴𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅(∠ACI) 
In rectangle ICDE, 𝑋𝑋𝐶𝐶 = 𝐼𝐼𝐴𝐴,𝐶𝐶𝐴𝐴 = 𝐼𝐼𝑋𝑋 = 𝐴𝐴𝑋𝑋𝑅𝑅𝑅𝑅𝑅𝑅(∠ACI) 
In Rt ∆CDB, 𝐶𝐶𝐵𝐵2 = 𝐵𝐵𝑋𝑋2 − 𝑋𝑋𝐶𝐶2 
In ∆DEB, cos� DEB � = 𝐷𝐷𝑋𝑋2+𝐵𝐵𝑋𝑋2−𝐷𝐷𝐵𝐵2∠  

2𝐷𝐷𝑋𝑋∙𝐵𝐵𝑋𝑋
1−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃−cos (𝛾𝛾−𝛽𝛽)(cos(𝛾𝛾−𝛽𝛽)−tanβ�2− �)

Therefore, ∠DEB = arccos ( cos(𝛾𝛾−𝛽𝛽)𝑡𝑡𝑡𝑡𝑡𝑡𝛽𝛽+sin (𝛾𝛾−𝛽𝛽) )
1−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

           (Eq. 3-3) 
sin (𝛾𝛾−𝛽𝛽)�1−(cos(𝛾𝛾−𝛽𝛽)−tanβ�2− �)2cos(𝛾𝛾−𝛽𝛽)𝑡𝑡𝑡𝑡𝑡𝑡𝛽𝛽+sin (𝛾𝛾−𝛽𝛽)

 The next is a backward derivation of the previous problem. If the projection angle 
∠DEB on the horizontal plane is given, how many degrees does the laser AB need to rotate? 
Given: ∠DEB (the angle formed by projecting rotation angle 𝜃𝜃 to the horizontal plane) 
            ∠XAE = 𝛽𝛽 (LiDAR’s inclination angle) 
            ∠XAB = ∠XAC = 𝛾𝛾 (the angle of laser beams relative to the sensor’s central axis) 
Find: 1) ∠BAC = 𝜃𝜃 (laser beam’s rotation angle) 
          2) ∠ACI (the angle of the laser beam AC relative to the horizontal plane) 
Calculate 𝛉𝛉 and ∠ACI               
Define: 𝐴𝐴 = sin(𝛾𝛾 − 𝛽𝛽) 
              𝐵𝐵 = cos(𝛾𝛾 − 𝛽𝛽) 
              𝑋𝑋 = 𝐴𝐴𝐴𝐴𝑅𝑅𝛽𝛽 
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In Eq. 4, the values of the variable A, B, C, D, E are computable based on the given information. 
The only unknown variable is 𝑥𝑥. After mathematical simplification, Eq. 3-4 can be written as a 
quadratic equation of 𝑥𝑥 in a standard form: 

Using the Quadratic Formula, the value of 𝑥𝑥 can be obtained. Since 𝑥𝑥 is equal to 𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃, 𝜃𝜃 is known. 
In addition, if we substitute 𝑥𝑥 for the 𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃 in Eq. 3-2, ∠ACI can also be calculated. Figure 3-5 
shows an example to demonstrate the application of the above derivation. When a LiDAR sensor 
is horizontally installed (𝛽𝛽 = 0°), the angle of a laser beam relative to the horizontal plane is 3° 
(𝛼𝛼 = 3°) , that is, 𝛾𝛾 = 90° − 𝛼𝛼 + 𝛽𝛽 = 87°.  No matter the direction of the laser ben’s scan 
(∠DEB = 0°~360°), its angle relative to the horizontal plane is fixed: ∠ACI = α = 3°. However, 
if we tilt the LiDAR sensor to −1° (𝛽𝛽 = −1°), the ∠ACI is changed with different orientations. 
For example, when a target object is located at 0° (∠DEB = 0°) orientation relative to the LiDAR 
sensor, the angle of the same laser beam relative to the horizontal plane is changed from  3° to 2° 
(∠ACI = 2°); When the same target object is located at 180° (∠DEB = 180°)  orientation, the 
angle is changed from 3° to 4° (∠ACI = 4°). Two intermittent points at 90° and 270° directions 
are due to the undefined Tangent function used in the calculation equations.  
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Figure 3-5. Angle variation with horizontal and inclined LiDAR sensor 

Installation Height and Occlusion 

Occlusion is a common challenge for over-road traffic sensors, including roadside LiDAR. LiDAR 
detection of a vehicle or a pedestrian can be occluded by other road users. The level of occlusion 
is affected by the LiDAR's built-in features and installation - the relative location and height of the 
target object and obstructions. Assuming that the numbers of valid laser beams shooting at the 
target object without and with occlusion are nr and no, respectively. The detection loss percentage 
of the target object due to occlusion is calculated by Eq3-6. 

Figure 3-6 demonstrates an occlusion scenario of a roadside LiDAR sensor: a 1.5m height 
obstruction is at a 5.0m location, while a 1.0m height target object is moving within the sensor's 
detection range. Note that in the plot, the scales of the X and Y axes are different, so it seems that 
the angles between adjacent lasers are not the same. The resolution of the laser beams is fixed (2° 
for a Puck sensor). At the location A, the target object is fully blocked by the obstruction (loss 
percentage = 100%); At the location B, the target object is partially blocked by the obstruction 
(loss percentage = 50%); At the location C, even though the target object is located behind the 
obstruction, the detection of the target object is not affected by the obstruction since the valid laser 
beams are different (loss percentage = 0%). 
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Figure 3-6. Demonstration of object detection with consideration of occlusion 

Even though LiDAR manufacturers provide specifications on the measurement range of each 
model, it does not mean an object located at the farthest measurement distance can be correctly 
identified. For detecting and recognizing a road user correctly, at least two laser beams need to 
reach and be reflected at the target object. In our research, two criteria are used for assessing 
LiDAR detection performance: 1) how many valid laser beams can shoot at the target object; 2) 
the vertical height between two adjacent valid laser beams shooting at the target object. 

Field Test 

After the theoretical analysis has been presented, attention now can be directed to experimental 
studies, in which three types of commonly used LiDAR sensors (Puck, Puck Hi-Res, and Ultra 
Puck) were applied at installation sites (as shown in Figure 3-7) to examine the theoretical results. 
The sensors were mounted on a tripod for easy adjustment of the height and inclination angle. A 
scale rod, a protractor, and a distance ruler were used to measure the height and inclination as well 
as the horizontal distance to the LiDAR sensor. Whiteboards with different dimensions were used 
to represent objects of different sizes.   
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Figure 3-7. Installation position test in a parking lot 

Different Heights & Same Moving Target 

Case description: each LiDAR sensor was horizontally installed at the heights of 1.5m, 1.8m, and 
2.0m above the flat ground, the height of a moving target object was 1.8m. Since the LiDAR senor 
did not have an inclination angle, the orientation of the objects which had the same distance to the 
LiDAR sensor was not an influential factor in the LiDAR detection range in this scenario. Table 
3-2 lists the detection range of the three selected LiDAR sensors with different heights. For the 
same type of LiDAR sensors, it is clearly shown that different sensor heights would lead to 
different detection ranges. 

Table 3-2. Detection Range of LiDAR Sensors (Horizontal Installation) 

LiDAR Height (m) Detection Range (m) 
≥ 1 laser ≥ 2 lasers ≥ 3 lasers 

Puck 
1.5 1.0-85.5 1.0-28.5 1.0-17.0 
1.8 1.0-100.0 1.0-34.0 1.0-20.5 
2.0 1.0-100.0 1.0-38.0 1.5-22.5 

 

Puck Hi-Res 
1.5 1.0-100.0 1.0-43.0 1.0-25.5 
1.8 1.0-100.0 1.0-51.5 1.0-30.5 
2.0 1.5-100.0 1.5-57.0 2.0-34.0 

 

Ultra Puck 
1.5 1.0-200.0 1.0-200.0 1.0-128.5 
1.8 1.0-200.0 1.0-200.0 1.0-154.5 
2.0 1.0-200.0 1.0-171.5 1.0-114.5 

Note: The height of a target object is 1.8m. 
 
The heatmaps in Figure 3-8 show the detection performance of a Puck sensor that was horizontally 
installed at a height of 2.0m. In the left plot, the color of each cell in the heatmap represents the 
valid number of laser beams (n) shooting at the target object. In the right plot, the color of each 
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cell in the heatmap indicates the vertical height (∆Y) between two adjacent valid laser beams 
shooting at the target object. As the distance between the target object and the sensor increases, 
the value of n decreases, and the ∆Y increases because the scan planes of the LiDAR sensor are a 
series of conical surfaces. 

 
Figure 3-8. Heatmaps of Puck LiDAR sensor (horizontal installation) 

Fixed Height & Changed Inclination 

Case description: each LiDAR sensor was installed at a th 2.0m height and the sensor’s inclination 
angle was −1° to + 2° with 1° resolution, the height of a moving target object was 1.8m. Since 
the LiDAR sensor was tilted, the objects located at different distances and orientations relative to 
the LiDAR sensor were scanned diversely. The heatmaps in Figure 3-9 and Figure 3-10 show the 
detection pattern changes of a Puck LiDAR sensor when the inclination angle was changed from 
−1° to + 2°. Figure 3-11 demonstrates the detection performance of Puck Hi-Res and Ultra Puck 
sensors with ±1° inclination. For an individual heatmap, the plot is symmetric about the X-axis; 
For a pair of heatmaps from the same LiDAR sensor with the same inclination angle but in opposite 
directions (e.g., ±1°), two corresponding heatmaps are centrosymmetric. 
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Figure 3-9. Heatmaps of Puck LiDAR sensor (inclined installation: -1o and 0o) 
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Figure 3-10. Heatmaps of Puck LiDAR sensor (inclined installation: +1o and +2o) 
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Figure 3-11. Heatmaps of Puck Hi-Res and Ultra Puck LiDAR sensors (inclined 

installation) 

 
Fixed Height & Vertical Installation 

Case description: a LiDAR sensor was installed at a fixed height above the flat ground, and the 
sensor’s inclination angle was 90° (i.e., vertical installation). In this case, the sensor’s central axis 
was parallel to the horizontal plane. Thus, during the 360° scan, the downward 180° scan and the 
upward 180° scan were valid for detecting objects on the ground and in the air.  

The project team conducted a field experiment in a warehouse to test this case: a Puck LiDAR 
sensor with a 90° vertical inclination angle was installed on a horizontal pole to scan the 
warehouse’s ceiling (Figure 3-12). The height from the ceiling to the LiDAR sensor was about 
5.13m, and the direction of the ceiling surface was perpendicular to the sensor’s central axis. Under 
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this vertical deployment condition. Based on the theoretical derivation, the scan locations of the 
ceiling surface by a vertically installed Puck LiDAR senor at a fixed height are determined (as 
shown in Figure 3-13). To validate the calculation, the researchers randomly chose 16 locations 
along the X-axis (one specific location from each laser beam) and compared the widths along the 
Y-axis obtained from the calculation and the measurement. Table 3-3 lists the validation results 
and corresponding offsets. It showed that the average measurement accuracy of the field data was 
about 3.5cm and the relative offset was 1.6%. According to the user manual of Puck sensors 
(Velodyne, 2016), the measurement accuracy of this type of LiDAR sensor is about 3.0cm, which 
verified the result of the theoretical study. The measurement accuracy of the ceiling’s height and 
the vertical deployment of the LiDAR sensor are the potential reasons for the offsets. Besides, we 
found that the laser beams with smaller vertical angles have better accuracy than those with larger 
vertical angles, and this issue may be caused by: 1) the LiDAR manufacturer does not provide 
information for angular correction; 2) at the same horizontal location/distance from the LiDAR 
sensor, laser beams with larger vertical angles travel a longer distance before shooting the surface 
than that propagated by laser beams with smaller angles; thus there is a higher probability of giving 
measurements with lower accuracy.   

 

 
Figure 3-12. LiDAR installed for vertical scan 
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Figure 3-13. Calculated scan locations of the ceiling surface by a Puck LiDAR sensor 

(vertical installation) 

 
Table 3-3. Validation for Scan Location Calculation 

Laser Angle 
(degree) 

Distance 
 (m) 

Calculated 
Width (m) 

Measured 
Width (m) 

Absolute 
Offset (m) 

Relative Offset 
(%) 

−15 0.767 −1.390 −1.357 0.033 2.374 
−13 2.663 −1.335 −1.303 0.032 2.397 
−11 3.137 −1.169 −1.147 0.022 1.882 
−9 3.622 −0.995 −0.982 0.013 1.307 
−7 4.468 −0.835 −0.828 0.007 0.838 
−5 5.658 −0.668 −0.666 0.002 0.299 
−3 6.370 −0.429 −0.428 0.001 0.233 
−1 7.158 −0.154 −0.154 0.000 0.000 
+1 9.595 0.190 0.192 0.002 1.053 
+3 10.363 0.606 0.615 0.009 1.485 
+5 11.365 1.091 1.109 0.018 1.650 
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+7 13.517 1.775 1.812 0.037 2.085 
+9 14.661 2.460 2.516 0.056 2.276 

+11 17.270 3.502 3.592 0.090 2.570 
+13 17.656 4.245 4.356 0.111 2.615 
+15 17.957 5.004 5.137 0.133 2.658    

Average  0.035 1.608 

 

Occlusion Case 

Case description: a LiDAR sensor was installed at the heights of 1.5m, 2.0m, and 2.5m above the 
flat ground. The heights of obstructions were set to 0.5m, 1.0m, 1.2m, and 1.5m. Two target objects 
of 1.0m and 1.5m in height were used as moving objects to test the level of occlusion due to the 
obstruction. In each case, the obstructions were set at fixed locations (5.0m, 10.0m, 15.0m, 20.0m, 
and 25.0m) from the LiDAR sensor. 

Based on our previous research experience, correct object identification needs at least two laser 
beams shooting at the object. Table 3-4 summarizes the selected Puck sensor's valid detection 
range (≥ 2 laser beams) in three representative cases. For example, a Puck LiDAR sensor was 
horizontally installed at a 2.0m location, a 1.0m height obstruction was at 10.0m from the sensor, 
and a 1.5m height target object was moving within 100.0m from the sensor. In Figure 3-14, the 
red lines represent the valid number of laser beams at each target object's location. The blue 
columns show the detection loss percentage of the target object. The two gray areas (3-22m, 29-
38m) indicate the valid detection ranges where at least two laser beams can shoot at the target 
object.   

Table 3-4. Detection Range of Puck LiDAR Sensor Considering Occlusion 

hobject = 1.5m, hLiDAR = 2.0m (horizontal) 
hBlockObject 

dBlockObject 
Detection Range (≥ 2 lasers) (m) 

0.5m 1.0m 1.2m 1.5m 
5.0m 3-22, 29-38 3-22, 29-38 3-22, 29-38 3-4, 10-22, 29-38 

10.0m 3-22, 29-38 3-22, 29-38 3-9, 29-38 3-9 
15.0m 3-22, 29-38 3-14, 29-38 3-14, 29-38 3-14 
20.0m 3-19, 29-38 3-19 3-19 3-19 
25.0m 3-22, 29-38 3-22 3-22 3-22 

hobject = 1.0m, hLiDAR = 2.0m (horizontal) 
hBlockObject 

dBlockObject 
Detection Range (≥ 2 lasers) (m) 

0.5m 1.0m 1.2m 1.5m 
5.0m 5-16, 20-22 7-17, 20-22 9-16, 20-22 20-22 

10.0m 5-9, 12-16, 20-22 5-9, 20-22 5-9 5-9 
15.0m 5-14, 20-22 5-14 5-14 5-14 
20.0m 5-16 5-16 5-16 5-16 
25.0m 5-16, 20-22 5-16, 20-22 5-16, 20-22 5-16, 20-22 

hobject = 1.5m, hLiDAR = 2.5m (horizontal) 
hBlockObject 

dBlockObject 
Detection Range (≥ 2 lasers) (m) 

0.5m 1.0m 1.2m 1.5m 
5.0m 5-28 5-28 6-28 7-28 
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10.0m 5-28 5-9, 12-28 5-9,12-28 5-9, 20-28 
15.0m 5-28 5-14, 20-28 5-14 5-14 
20.0m 5-28 5-19 5-19 5-19 
25.0m 5-24 5-24 5-24 5-24 

 

 
Figure 3-14. Demonstration of Puck sensor’s detection performance considering occlusion 

Summary 

To apply LiDAR sensors for roadside detection of traffic and pedestrians, understanding how 
installation may affect LiDAR performance is critical. This research analyzed the built-in features 
of the selected models and conducted theoretical and experimental studies to explore and examine 
the installation methods for the best detection range and accuracy. After the theoretical analyses 
were made, four field test scenarios were conducted for examination, in which LiDAR sensors 
were 1) horizontally installed at different heights; 2) installed at a fixed height with different 
inclination angles; 3) vertically installed at a fixed height; and 4) horizontally installed at different 
heights with consideration of occlusion. The examination successfully validated the theoretical 
study. Besides, although Velodyne products were used in the investigation, this study provides 
general guidance on maximizing the performance by using the built-in features of LiDAR sensors. 
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4. OCCLUSION AND TRAFFIC FLOW 
When over-road sensors are used for traffic detection, occlusion is an inevitable issue and hurts 
object detection. This project studied the relationship between traffic flow and vehicle occlusion 
rate. Firstly, with single and two LiDAR sensors installed at the roadside, simulated traffic data 
along urban freeways under conditions of different levels of services (LOS A to E) and truck 
percentages (5% to 30%) were analyzed to generate vehicle occlusion rates for each case, including 
percentages of fully detectable, partially detectable, (continuous) undetectable vehicles. Secondly, 
a case study using real LiDAR data collected from two experimental sites achieved 0.92% and 
0.62% average offsets compared with the generated rates, verifying the simulation results' 
accuracy. The whole evaluation study provides expected vehicle occlusion rates from a roadside 
LiDAR system under different traffic conditions and gives guidance to traffic engineers or 
transportation agencies for planning and deploying sensors.  

In this occlusion evaluation study, we divided all objects in each data frame into three categories 
based on their occlusion levels: 

1) Fully detectable objects: the objects can be detected completely (No occlusion). 

2) Partially detectable objects: the objects can be detected partially (Partial occlusion). 

3) Undetectable objects: the objects cannot be detected (Full occlusion). 

Figure 4-1demonstrates the above three occlusion scenarios: vehicle #1 is partially occluded by 
vehicle #3, vehicle #6 is fully occluded by vehicle #5, and other vehicles are not occluded at all. 
In other words, fully detectable vehicles are vehicles #2, #3, #4, #5, and #7; the partially detectable 
vehicle is vehicle #1, and the undetectable vehicle is vehicle #6. 

 
Figure 4-1. Traffic occlusion scenarios demonstration 
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This research used cuboids of different sizes to represent different types of vehicles. Considering 
a Cartesian coordinate system with a LiDAR sensor at the origin, the laser beams of the sensor can 
only scan three different planes among the six planes of a vehicle cuboid, that is, top/left/front 
planes for vehicles in the first quadrant, top/right/front planes for vehicles in the second quadrant, 
top/right/back planes for vehicles in the third quadrant, and top/left/back planes for vehicles in the 
fourth quadrant. In fact, the area of each plane from a vehicle should be equal to or less than the 
area of the corresponding plane from a designed cuboid. This means that theoretical calculations 
using cuboids may lead to the worst vehicle occlusion situation. In addition, the partial occlusion 
is not further distinguished based on the number of blocked laser beams. Therefore, it is acceptable 
to use a cuboid to represent the shape of a vehicle in simulation evaluation.  

For a specific type of LiDAR sensor installed at the roadside, each laser beam's horizontal and 
vertical directions are known at a specific moment. This means that for a specific traffic scene at 
a certain moment, it is certain whether a laser beam can shoot at the surface of a vehicle. If so, the 
exact location of the reflection point can also be determined. During each  360° scan (one data 
frame), each detected vehicle's properties, the vehicle ID, and distance to the LiDAR sensor, are 
critical to determining the type of vehicle occlusion. To effectively save this information of each 
frame, this research proposed a 2D table/matrix structure 𝐻𝐻 (defined by Equation 4-1) based on 
the configuration of the chosen sensor: each row of the table indicates each elevation angle/channel 
of the laser beams; each column of the table represents each azimuth interval of the laser beams 
during 0° to 360° scan; the contents of the table are the vehicle ID(s) with the corresponding 3D 
distance(s) (defined by Equation 4-2). In this way, the information of vehicles that are measured 
by the same laser beam at the same azimuth interval is recorded in the same cell of the 2D table. 

Where W is the total number of laser IDs and L is the total number of azimuth intervals within a 
360° scan; Q(m,n) includes vehicle ID and distance information of s vehicles that are shot by the 
laser m at the azimuth angle n. 

The number of data points collected from each vehicle during a 360° scan can be calculated− count 
the number of times (𝑀𝑀) that each vehicle ID appears in the 2D table. Suppose there is more than 
one vehicle information saved in the same cell. The first vehicle occludes all other vehicles 
(vehicles are sorted by distance from near to far) since a specific laser beam at a specific azimuth 
cannot be used again after it shoots at the first vehicle. In this way, the number of times (𝑁𝑁) that 



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

28 

 

each occluded vehicle ID appears in the 2D table can also be obtained. Comparing 𝑀𝑀 and 𝑁𝑁, the 
vehicle occlusion level can be determined: full detection (𝑀𝑀 > 𝑁𝑁 = 0), partial detection (𝑀𝑀 >
𝑁𝑁 > 0), and non-detection (𝑀𝑀 = 𝑁𝑁). When two LiDAR sensors are used simultaneously, the 
detection of each vehicle from two sensors is independent. If a vehicle can be fully detected by at 
least one sensor, the vehicle is labeled as full detection; if any sensor cannot detect a vehicle, the 
vehicle is labeled as non-detection; for other detection combinations, the vehicle is labeled as 
partial detection. The whole process of the vehicle occlusion classification is shown in Figure. 4-
2. 

 
Figure 4-2 Flowchart of vehicle occlusion classification 

This research aims to evaluate the impact of occlusion on vehicle detection using roadside LiDAR 
sensing systems. Due to field data collection and funding constraints, it is almost impossible for 
us to collect enough traffic flow data with a stable traffic density under various scenarios. 
Therefore, simulation is a good approach for vehicle occlusion analysis to generate traffic data at 
different LOS levels. Using the traffic simulation software PTV Vissim, the researchers simulated 
30 traffic scenarios along an urban freeway segment to evaluate the impact of occlusion on vehicle 
detection (as shown in Figure 4-3). The details of the developed simulation environment are 
introduced as follows: 
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1) Urban freeway segment 

1000m length; 4 lanes (2 lanes in one direction) with 3.66m width; median with 17.6m 
width; right-side lateral clearance 2.5m; 2 ramps per mile.  

2) FFS(free-flow speed) = 70mph. 

3) PHF(peak hour factor) = 0.95; fp(driver population adjustment factor) = 1.0; ET(passenger-

car equivalents) = 1.5 (type of terrain: level). 

4) LiDAR sensor: Puck (VLP-16) and Ultra Puck (VLP-32C), 10Hz rotation frequency.   

Installation: LiDAR 1 is horizontally installed at the median (500m, 0m, 2.4m) location. 
                    LiDAR 2 is horizontally installed at the median (550m, 0m, 2.4m) location.    
                    (Zhao et al., 2020) 

5) Region of Interest (ROI): [400m, 600m].  

6) Level of Service (LOS): A, B, C, D, E. 

7) Vehicle cuboid size: Passenger car (L = 4.5m, W = 1.8m, H = 1.6m). 

                                  
                                  

Truck (L = 16.2m, W = 2.6m, H = 2.6m). 
(Hancock and Wright, 2013) 

8) Percentage of trucks: 5%, 10%, 15%, 20%, 25%, 30%. 

Based on the settings above, the traffic volumes for five levels of services were calculated 
individually, considering different truck percentages (chosen the maximum density for each LOS). 
Then the classification and evaluation methods were applied to the generated simulation traffic 
data. 

 
Figure 4-3 Simulation of traffic flow 

This project research concluded vehicle occlusion evaluation results, including fully detectable 
rate, partially detectable rate, undetectable rate, percentage of undetectable vehicles (consecutive 
for at least 0.5 seconds), and percentage of undetectable vehicles (successive for at least 1 second) 
of two deployment scenarios - single LiDAR sensor case (use the LiDAR 1 only) and two LiDAR 
sensors case (use the LiDAR 1 and the LiDAR 2 together). Table 4-1 through Table 4-4 list the 
occlusion rates calculated for different LOS conditions and truck percentages using single and two 
Velodyne 16-laser and 32-laser LiDAR sensors.   
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Based on the tables, the findings are summarized as: 
1) In general, for each LOS condition, with the increasing truck percentage, the fully

detectable rate decreases, while the partially detectable rate, undetectable rate, percentage

of undetectable vehicles (consecutive for at least 0.5 seconds) and percentage of

undetectable vehicles (consecutive for at least 1.0 second) rise.

2) There is a significant increase in the undetectable rate from 25% truck to 30% truck.

3) Compared with using a single LiDAR sensor, the undetectable rate, percentage of

undetectable vehicles (consecutive for at least 0.5 seconds), and percentage of undetectable

vehicles (consecutive for at least 1 second) in the case of using two LiDAR sensors at the

same time can be reduced.

4) In general, LiDAR sensors with more laser beams provide better detection

performance in avoiding continuous full occlusion than LiDAR sensors with fewer laser

beams.

Table 4-1 Vehicle occlusion results using a single 16-laser LiDAR sensor 
LOS Truck 

Percentage 
Volume 
(veh/h) 

Fully 
Detectable 

Rate 

Partially 
Detectable 

Rate 

Undetectable 
Rate 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 0.5 second) 

Percentage of 
undetectable 

vehicles (consecutive 
for at least 1.0 

second) 

A 

5% 2854 90.2340% 7.6813% 2.0846% 10.0561% 2.8031% 
10% 2783 89.2491% 8.3201% 2.4308% 10.9594% 4.1682% 
15% 2722 89.1081% 8.3496% 2.5424% 11.2785% 5.1800% 
20% 2660 88.3013% 8.8546% 2.8442% 11.8045% 5.7143% 
25% 2600 87.9856% 9.0315% 2.9829% 12.9231% 7.1923% 
30% 2542 86.6332% 9.0544% 4.3124% 13.4249% 7.9237% 

B 

5% 4673 84.9646% 11.8865% 3.1488% 17.0768% 3.9161% 
10% 4560 83.8670% 12.2553% 3.8777% 17.8289% 6.8202% 
15% 4454 83.2576% 12.6634% 4.0790% 17.9165% 8.4419% 
20% 4352 82.1930% 13.3498% 4.4573% 18.4972% 9.6048% 
25% 4257 81.7750% 13.6773% 4.5477% 18.6751% 10.6413% 
30% 4171 77.5417% 14.5251% 7.9332% 19.0053% 12.3472% 

C 

5% 6562 80.6021% 14.9750% 4.4229% 22.1355% 6.0500% 
10% 6406 79.3240% 15.8188% 4.8573% 22.4931% 8.5389% 
15% 6252 77.9545% 16.5377% 5.5078% 23.6404% 10.7806% 
20% 6106 77.1733% 17.0313% 5.7954% 24.1893% 12.6761% 
25% 5978 76.3101% 17.4143% 6.2756% 25.4600% 15.0719% 
30% 5847 69.5853% 19.0244%   11.3903% 25.7568% 18.0434% 

D 

5% 7970 77.2258% 17.7037% 5.0705% 25.8971% 7.0013% 
10% 7782 75.7754% 18.3890% 5.8356% 26.6255% 10.6399% 
15% 7600 74.5211% 19.0208% 6.4581% 27.5395% 13.0395% 
20% 7428 72.9538% 19.8421% 7.2041% 29.0522% 16.2224% 
25% 7262 72.0243% 20.3370% 7.6387% 29.0691% 17.6398% 
30% 7100 64.1991% 21.8813% 13.9196% 31.1268% 22.0704% 

E 

5% 8890 74.5929% 19.5995% 5.8076% 28.1440% 8.6952% 
10% 8666 73.3388% 20.2545% 6.4067% 28.7214% 11.5740% 
15% 8473 72.0165% 20.9403% 7.0432% 29.4229% 14.6111% 
20% 8287 70.4506% 21.5428% 8.0066% 31.0486% 18.1851% 
25% 8104 69.6553% 22.1009% 8.2437% 31.3302% 19.2127% 
30% 7922 61.0427% 23.6164% 15.3409% 34.5367% 25.0694% 
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Table 4-2 Vehicle occlusion results using two 16-laser LiDAR sensors 
LOS Truck 

Percentage 
Volume 
(veh/h) 

Fully 
Detectable 

Rate 

Partially 
Detectable 

Rate 

Undetectable 
Rate 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 0.5 second) 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 1.0 second) 

 
 

A 

5% 2854 95.7003% 3.8036% 0.4961% 2.3476% 0.5256% 
10% 2783 94.8648% 4.5066% 0.6285% 2.9824% 1.0780% 
15% 2722 94.5347% 4.7988% 0.6665% 3.0860% 1.3960% 
20% 2660 93.8358% 5.3936% 0.7706% 3.8346% 1.5414% 
25% 2600 93.5382% 5.6039% 0.8579% 4.7692% 1.8462% 
30% 2542 92.9160% 5.9853% 1.0987% 5.1078% 2.0129% 

 
 

B 

5% 4673 93.2719% 6.1330% 0.8951% 5.0387% 0.7062% 
10% 4560 92.1947% 6.8658% 0.9395% 5.2193% 1.6667% 
15% 4454 91.5231% 7.4732% 1.0037% 5.5231% 1.9533% 
20% 4352 90.5567% 8.3550% 1.0883% 5.8824% 2.6195% 
25% 4257 90.0098% 8.8388% 1.1514% 6.3425% 2.9833% 
30% 4171 87.3523% 10.4161% 2.2317% 7.0184% 3.5887% 

 
 

C 

5% 6562 90.9836% 8.1196% 0.8968% 4.9528% 1.3106% 
10% 6406 89.7662% 9.1458% 1.0880% 5.7602% 1.8889% 
15% 6252 88.5008% 10.1483% 1.3508% 7.3097% 2.6871% 
20% 6106 87.6801% 10.8663% 1.4536% 7.8939% 3.2263% 
25% 5978 86.6376% 11.7800% 1.5824% 8.4978% 3.5296% 
30% 5847 82.6985% 14.1012% 3.2003% 8.8592% 5.1650% 

 
 

D 

5% 7970 89.1568% 9.8213% 1.0219% 5.5332% 1.1794% 
10% 7782 87.6739% 10.9545% 1.3716% 7.3374% 2.3130% 
15% 7600 86.5257% 11.9085% 1.5658% 9.0000% 2.9079% 
20% 7428 85.0208% 13.1449% 1.8343% 9.9219% 3.9580% 
25% 7262 83.9357% 14.0246% 2.0396% 11.0851% 4.6268% 
30% 7100 79.4298% 16.6110% 3.9592% 11.5014% 6.3099% 

 
 

E 

5% 8890 87.6539% 11.1387% 1.2074% 6.4567% 1.5636% 
10% 8666 86.2246% 12.2690% 1.5063% 8.1814% 2.5040% 
15% 8473 85.0009% 13.2268% 1.7724% 9.7132% 3.3636% 
20% 8287 83.5545% 14.3888% 2.0567% 11.5482% 4.5010% 
25% 8104 82.4406% 15.3531% 2.2064% 11.8090% 5.1209% 
30% 7922 77.6677% 17.8311% 4.5012% 12.2696% 6.9679% 

 

Table 4-3. Vehicle occlusion results using a single 32-laser LiDAR sensor 
LOS Truck 

Percentage 
Volume 
(veh/h) 

Fully 
Detectable 

Rate 

Partially 
Detectable 

Rate 

Undetectable 
Rate 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 0.5 second) 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 1.0 second) 

 
 

A 

5% 2854 89.5316% 8.9771% 1.4912% 7.0427% 2.2775% 
10% 2783 88.5885% 9.3940% 1.9001% 8.4082% 3.8088% 
15% 2722 88.5197% 9.5114% 2.0863% 8.7068% 4.8861% 
20% 2660 87.7750% 9.7820% 2.4430% 9.8872% 5.4887% 
25% 2600 87.4986% 9.8403% 2.6611% 10.8846% 6.7692% 
30% 2542 85.7182% 10.4074% 3.8744% 11.4020% 7.2303% 

 
 

B 

5% 4673 83.8559% 13.9614% 2.1827% 11.8339% 3.4453% 
10% 4560 82.9076% 14.0170% 3.0754% 13.8816% 6.2939% 
15% 4454 82.3527% 14.2976% 3.3497% 14.4140% 7.7458% 
20% 4352 81.3852% 14.7970% 3.8178% 15.1654% 9.1452% 
25% 4257 81.0161% 15.0181% 3.9658% 16.0677% 10.1715% 
30% 4171 76.1623% 16.8048% 7.0329% 16.5838% 11.5080% 

 
 

C 

5% 6562 79.2159% 17.6287% 3.1554% 15.9860% 5.1813% 
10% 6406 78.0488% 18.2016% 3.7496% 17.3431% 7.6335% 
15% 6252 76.7929% 18.7296% 4.4776% 18.6020% 10.0288% 
20% 6106 76.0818% 19.0420% 4.8762% 19.8493% 11.9718% 
25% 5978 75.3554%  19.2134% 5.4312% 22.1918% 14.2021% 
30% 5847 67.8779% 22.1398% 9.9823% 22.2336% 16.4529% 

 
 

D 

5% 7970 75.6025% 20.8043% 3.5932% 19.0715% 5.9849% 
10% 7782 74.3060% 21.2079% 4.4860% 20.8944% 9.4577% 
15% 7600 73.1946% 21.5865% 5.2188% 22.5789% 12.1316% 
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20% 7428 71.7535% 22.2188% 6.0277% 24.7173% 15.0108% 
25% 7262 70.9492% 22.4540% 6.5967% 25.3649% 16.8273% 
30% 7100 62.2004%  25.7620% 12.0377% 26.3803% 19.8169% 

 
 

E 

5% 8890 72.8039% 23.0821% 4.1140% 21.4848% 7.3228% 
10% 8666 71.7242% 23.3928% 4.8830% 22.3402% 10.2123% 
15% 8473 70.5221% 23.8652% 5.6127% 24.1237% 13.4899% 
20% 8287 69.1038% 24.2299% 6.6663% 26.4511% 17.0629% 
25% 8104 68.4351% 24.5185% 7.0464% 27.4062% 18.0158% 
30% 7922 58.8528% 28.0341% 13.1131% 29.1972% 22.4565% 

 

Table 4-4. Vehicle occlusion results using two 32-laser LiDAR sensors 
LOS Truck 

Percentage 
Volume 
(veh/h) 

Fully 
Detectable 

Rate 

Partially 
Detectable 

Rate 

Undetectable 
Rate 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 0.5 second) 

Percentage of 
undetectable vehicles 

(consecutive for at 
least 1.0 second) 

 
 

A 

5% 2854 94.3861% 5.3669% 0.2470% 1.1563% 0.6657% 
10% 2783 93.3842% 6.1583% 0.4575% 2.4434% 1.2576% 
15% 2722 93.0182% 6.3947% 0.5871% 2.9023% 2.0206% 
20% 2660 92.1948% 7.0859% 0.7193% 3.7218% 2.5308% 
25% 2600 92.0119% 7.2536% 0.7346% 4.3077% 3.0077% 
30% 2542 91.5514% 7.4704% 0.9782% 4.8997% 3.3522% 

 
 

B 

5% 4673 90.7566% 8.9338% 0.3095% 1.6906% 1.0700% 
10% 4560 89.5792% 9.6839% 0.7369% 4.0570% 2.2588% 
15% 4454 88.8440% 10.2834% 0.8725% 4.8720% 2.6942% 
20% 4352 87.7951% 11.1322% 1.0727% 5.9513% 3.5156% 
25% 4257 87.2168% 11.5820% 1.2012% 6.2485% 4.0169% 
30% 4171 84.5781% 13.2562% 2.1658% 6.9628% 4.4764% 

 
 

C 

5% 6562 87.4133% 12.1138% 0.4729% 2.5907% 1.5087% 
10% 6406 86.0363% 13.0811% 0.8826% 4.5114% 2.7943% 
15% 6252 84.6542% 14.0982% 1.2476% 6.3980% 3.8388% 
20% 6106 83.5601% 14.9153% 1.5246% 7.8120% 4.7494% 
25% 5978 82.6719% 15.6899% 1.6381% 8.5647% 5.2359% 
30% 5847 78.0415% 18.7606% 3.1979% 9.0212% 5.4729% 

 
 

D 

5% 7970 84.5932% 14.8996% 0.5072% 2.6474% 1.5433% 
10% 7782 83.0910% 15.8850% 1.0240% 5.2043% 3.3410% 
15% 7600 81.7440% 16.7959% 1.4602% 7.6974% 4.6447% 
20% 7428 80.0604% 18.0710% 1.8686% 9.4507% 5.8966% 
25% 7262 78.9441% 18.8193% 2.2365% 10.9749% 6.7475% 
30% 7100 73.1284% 22.5443% 4.3273% 10.5211% 7.4085% 

 
 

E 

5% 8890 82.3654% 16.9942% 0.6404% 3.2508% 1.8560% 
10% 8666 81.0085% 17.8750% 1.1166% 5.5620% 3.3003% 
15% 8473 79.6263% 18.7946% 1.5791% 8.2733% 4.9569% 
20% 8287 77.8137% 20.0387% 2.1476% 10.8966% 6.6490% 
25% 8104 76.7619% 20.7926% 2.4455% 12.0064% 7.7493% 
30% 7922 70.3472% 24.8310% 4.8218% 12.1308% 8.4196% 

 

Validation of Occlusion Results using Field Data 

LiDAR data collected from two experimental sites were used to verify the occlusion results from 
the simulation study. Two 32-channel LiDAR sensors (VLP-32C, 10Hz) were installed at two 
urban freeway segments located at I-80 (39.51°N, −119.94°W, median) and US395& North 
McCarran Boulevard (39.55N, −119.79°W, southbound onramp) in Reno, Nevada, as shown in 
Figure 4-4. For site 1, the LiDAR data on August 15th, 2019 (7 am to 8 am) was used. For site 2, 
the data on August 28th, 2019 (7 am to 8 am) was used. Since the chosen one-hour period was 
during morning peak hours and the traffic density changed dynamically, we divided one-hour 
traffic volumes into 12 5-minute intervals. The traffic density can be obtained by using the 
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previously developed traffic volume calculation algorithm and manually counting the truck 
volumes, thus knowing the LOS level.  

 
Figure 4-4 ITS trailer equipped with two LiDAR sensors 

In summary, Table 4-5 and Table 4-6 show the details of partial occlusion results using field data 
at the two sites. By comparing the experimental results with the corresponding simulation results 
under the same LOS level and similar truck percentage conditions, the average offset of partially 
detectable rates for the two sites are 0.92% and 0.62%, respectively, which proves the accuracy of 
the simulation results.  

Table 4-5. Validation of partial occlusion results from site 1 
Time 
(mins) 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60

Volume 
(veh/5mins) 225 212 223 251 273 255 240 264 234 244 223 206

Truck 
(veh/5mins) 34 18 32 40 38 56 50 30 34 36 26 48

Volume 
(veh/hr) 2700 2544 2676 3012 3276 3060 2880 3168 2808 2928 2676 2472

Truck 
(veh/hr) 408 216 384 480 456 672 600 360 408 432 312 576

Truck 
percentage 

(%)
15.11 8.49 14.35 15.94 13.92 21.96 20.83 11.36 14.53 14.75 11.66 23.30

Passenger-car 
equivalent 
flow rate 
(pc/hr/ln)

1019 931 1006 1141 1229 1192 1116 1175 1057 1103 994 968

Speed 
(mph) 70 70 70 70 70 70 70 70 70 70 70 70

Density 
(pc/mi/ln) 15 13 14 16 18 17 16 17 15 16 14 14
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LOS Level B B B B B B B B B B B B

Partially 
detectable rate 
(experiment) 

(%)

14.24 10.28 14.30 14.36 15.31 15.41 16.45 13.95 14.95 15.56 12.74 15.64

Partially 
detectable rate 

(simulation)  
(%)

14.30 14.02 14.30 14.30 14.30 14.80 14.80 14.02 14.30 14.30 14.02 15.02

Absolute offset 
(%) 0.06 3.74 0.00 0.06 1.01 0.61 1.65 0.07 0.65 1.26 1.28 0.62

Average offset 
(%) 0.92 

  

Table 4-6. Validation of partial occlusion results from site 2 
Time 
(mins) 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55 55-60

Volume 
(veh/5mins) 526 598 612 677 625 573 493 531 565 514 497 563

Truck 
(veh/5mins) 22 30 34 26 30 16 20 18 20 20 20 24

Volume 
(veh/hr) 6312 7176 7344 8124 7500 6876 5916 6372 6780 6168 5964 6756

Truck 
(veh/hr) 264 360 408 312 360 192 240 216 240 240 240 288

Truck 
percentage 

(%)
4.18 5.02 5.56 3.84 4.80 2.79 4.06 3.39 3.54 3.89 4.02 4.26

Passenger-car 
equivalent 
flow rate 
(pc/hr/ln)

1696 1936 1986 2179 2021 1835 1588 1705 1816 1655 1601 1816

Speed 
(mph) 67 64 63 59 62 65 68 67 66 68 68 66

Density 
(pc/mi/ln) 25 30 32 37 33 28 23 25 28 24 23 28

LOS Level C D D E D D C C D C C D

Partially 
detectable rate 
(experiment) 

(%)

18.28 20.68 19.86 23.71 21.47 19.68 17.14 17.28 20.32 18.63 18.29 21.12

Partially 
detectable rate 

(simulation)  
(%)

17.63 20.80 20.80 23.08 20.80 20.80 17.63 17.63 20.80 17.63 17.63 20.80

Absolute offset 
(%) 0.65 0.12 0.94 0.63 0.67 1.12 0.49 0.35 0.48 1.00 0.66 0.32

Average offset 
(%) 0.62 

 

  



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

35 

 

5. WEATHER CONDITIONS AND ROADSIDE LIDAR DATA 
LiDAR sensing could be negatively affected by rain, snow, and wind conditions. Weather-caused 
impacts can lead to difficulties in data processing and accuracy. In this research, a methodology 
was developed to automatically identify whether LiDAR data are affected by rain, snow, and wind 
conditions. The automatic identification can be used to adaptively adjust data processing 
algorithms/parameters or search required weather-impacted LiDAR data in a LiDAR “data lake.” 
First, the impacts of rain, snow, and wind were characterized using statistical measures. Detection 
distance offset (DDO) and detection distance offset for wind (DDOW) were calculated and 
investigated. 

As shown in Figure 5-1, the three pictures are one-frame LiDAR point clouds captured from the 
Veloview (the imaging and analysis software for LiDAR data) in terms of various weather 
conditions. Figure 5-1(a) intuitively indicates that the ground surface and surrounding objects are 
quite clear with normal weather conditions; however, rain and snow conditions can lead to many 
noise points obstructing the ground surface points and surrounding objects, which would be a 
major impact on the accuracy of the data.  

The patterns of rain and snow are similar, they interfere with LiDAR data collection due to 
raindrops or snowflakes that produce noise on the point clouds as a part of scanning and therefore 
lasers are blocked. In order to characterize the impact caused by rain and snow conditions, this 
research developed two methods: statistical analysis and DIFFSUM analysis to analyze the data 
under rainy and snowy conditions in the same way and then compare with the data under normal 
conditions to determine the impact of rain and snow on data accuracy.   

 

 

Figure 5-1. LiDAR Point Clouds under Different Weather Conditions 

 

LiDAR measure distances to the object; that means for each measurement, a distance value is 
returned to each point.  Distances are with respect to the sensor's origin. One sensor rotation can 
be referred to as a single frame; the horizontal azimuth resolution is about 0.2 degrees. The VLP-
32 sensor used in this study has 32 laser beams and scanning 360 degrees. That means for one 
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frame, the sensor will return the distance value of 32 columns (laser beam) and 1800 rows 
(azimuth). For this study, since the LiDAR sensor rotates 360 degrees for one data frame to objects, 
different objects in different directions will have different values, according to the distances from 
the LiDAR and the objects. 

Because of the impact of inclement weather, the quality of the data has deteriorated. In order to 
better address this impact, this study uses the detection distance to calculate the DDO under 
different frames. As shown in Figure 5-2, at frame i, the LiDAR scans the object and returns to 
distance Di, and at frame i+1, the LiDAR scans the object and returns to distance Di+1; the 
difference between Di+1 and Di is the distance offset. This offset calculation method calculates the 
difference in the distance between a frame and the base frame in an azimuth angle. The DDO can 
be obtained as follows: 

𝐶𝐶𝛿𝛿 = 𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑏𝑏𝑡𝑡𝑐𝑐𝑏𝑏                 (Equation 5.1) 

 

where 

Dδ is the DDO at the δ degree; 

δ is the specific azimuth angle value; 

Di is the distance value at the i frame; 

Dbase is the distance value at the base frame. 

 

Figure 5-2. Distance Measurement Concept 
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This study started with percentile analysis and standard deviation to understand the difference of 
LiDAR data in different weathers. We calculated and compared the 25th, median (50th), and 75th 
percentile of data offset values for different weathers. The data offsets were differences between 
the LiDAR-to-point distances in a data frame and the LiDAR-to-point distances in the base frame, 
and the base frame is usually the first no traffic frame in a period. A one-minute (600 frames) 
LiDAR dataset for each of the weather conditions was used for the percentile calculation 

Figure 5-3 demonstrates the normal weather condition's 25th percentile, median, and 75th 
percentile offset values at each azimuth angle (60 frames). There was basically no frame-by-frame 
offset under normal weather conditions.  

 
Figure 5-3 Offset Plot of Normal Condition 

We also calculated the percentile offsets of continuous 600 frames for snow weather data and rain 
data. Examples of 25th percentile, median, and 75th percentile offset values are presented in Figure 
5-4 and Figure 5-5. More and higher percentile offsets can be observed in the snow and rain data 
than percentile offsets in the normal weather data. 

 
Figure 5-4 Offset Plot of Snowy Condition 
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Figure 5-5 Offset Plot of Rainy Condition 

 

 

Standard Deviation Analysis 

Standard deviation measures the amount of variation or dispersion of a set of values. Same as 
percentile calculation, the standard deviation was calculated with 600 frames of LiDAR data. For 
each laser beam and each azimuth angle, the offset values of 600 frames were aggregated to 
calculate the offset standard deviation.  

After calculating the sample standard deviations for normal, snowy, and rainy conditions at each 
azimuth, the results were plotted in Figure 5-6. For the normal weather condition, the standard 
deviations are slight at most azimuth values, indicating that the dispersion is weak and the offset 
is not apparent. For the snowy and rainy weather condition, the standard deviations are high at 
most azimuth angles, meaning that the dispersion is strong.  

 
Figure 5-6 Offset Standard Deviation of Normal, Snowy, and Rainy Conditions 

Observed through point cloud data, the fluctuations under snowy and rainy weather are obviously 
greater than in normal weather. However, the standard deviation analysis has 1800 values for 1800 
azimuth angles, which is easier to be observed by the chart visualization but not for an automatic 
identification process. This study then converted those 1800 standard deviations into one index 
value with the DDO standard deviation. The results are shown in Figure 5-7. 
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Figure 5-7 Percentile Values of Standard Deviation 

DIFFSUM Analysis  

According to the analysis results of the percentile offsets and the standard deviations, it can be 
concluded that the DDO distributions are different and can be used to classify normal, snow, and 
rainy weather LiDAR data. 

To further verify this conclusion, this study developed a DIFFSUM method to calculate the sum 
of the DDO of all lasers at all azimuth. DIFFSUM is calculated by comparing the absolute 
cumulative residual of the compared frame and the base frame, serving as a measurement of the 
similarity between frames. The calculation equation is given as follows: 

𝐶𝐶𝐼𝐼𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀 = ∑  𝑡𝑡𝑖𝑖
𝑖𝑖=1 � |𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,𝑗𝑗

𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑏𝑏 − 𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,𝑗𝑗𝑏𝑏𝑡𝑡𝑐𝑐𝑏𝑏|
𝑡𝑡𝑗𝑗

𝑖𝑖=1
            (Equation 5-2) 

where 

𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,𝑗𝑗
𝑓𝑓𝑓𝑓𝑡𝑡𝑓𝑓𝑏𝑏 is the DDO matrix of the frames to be compared; 

𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,𝑗𝑗𝑏𝑏𝑡𝑡𝑐𝑐𝑏𝑏 is the DDO value of the base frame. 

Extract ten frames of DDO from normal, snowy, and rainy weather conditions for DIFFSUM 
calculation, and then compare the DIFFSUM results of these three weather conditions. In the 
demonstration of Figure 5-8, the DIFFSUM values in rainy and snowy conditions are significantly 
higher than values in normal weather conditions, so diffsum can be used as a data index to 
automatically report the weather condition based on LiDAR data.  
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Figure 5-8 DIFFSUM Results of Normal, Snowy, and Rainy Conditions 

Analysis of the influence of wind on sensor performance 

Unlike snowy or rainy weather, the wind has a different impact on roadside LiDAR sensing. When 
wind shakes the roadside LiDAR, the vibration of laser beams causes offsets of distance 
measurements differently from the offsets caused by snow or rain droplets. Wind’s impact on 
roadside LiDAR sensor data can be minor for light wind or when the sensor is mounted on the 
traffic signal poles. Still, it can be significant with trailer poles, other thin poles, or temporary 
installation. 

The data used to analyze the offset standard deviation of windy and normal weather were collected 
at the intersection of Coogan Dr & Boulder Hwy, Henderson, NV, on June 14 and June 15, 2020; 
the selected comparison laser beam is ID1, the elevation angle of the laser ID1 is -1 degree, and 
the distance to the sensor is 21-96 meters for this intersection. Same analysis method as rain and 
snow, first, we extracted the continuous 600 frames of LiDAR data, and according to the 
corresponding to the azimuth angle, extract the distance value of the laser ID 1 in the data. Next, 
compare the distance of these 600 frames with the base frame to obtain the DDO value between 
each frame and the base frame at 1800 azimuth angles, then get the offset standard deviation value 
of all frames at each azimuth angle. Figure 5-9 shows the distribution of standard deviations at all 
azimuth angles for normal weather and windy weather.  
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Figure 5-9. Offset Standard Deviation of Normal and Windy Conditions 

The offset standard deviations of windy weather and normal weather are not evident in Figure 5-
9, although researchers could see significant sensor shaking and point shifting when watching the 
continuous frames of wind weather LiDAr data. Further analysis found that wind shaking causes 
different distance measurement offsets on horizontal and vertical surfaces. Wind shaking mainly 
causes up-and-down vibration of laser beams, which can be considered the vertical angle of laser 
beams changing frame by frame. The vertical angle change causes major distance offsets when the 
reflection points are on a horizontal surface. However, this type of vibration does not generate 
major offsets when the reflection surface is vertical. Laser ID 1 in Figure 5-9 was a laser beam 
mainly scanning the surrounding objects rather than the road surface, so the offset standard 
deviation was similar to the deviation of normal weather. Table 5-1 and Figure 5-10 compared 
wind shaking’s impact on distance measurements for horizontal and vertical surfaces. 

Also, the offsets caused by wind shaking are positive and negative values around the mean value, 
almost the distance measurement of normal weather. Therefore, the aggregated offsets showed a 
similar trend as the trend of normal weather. 

Table 5-1 Data Analysis of DDOW between Vertical Surface and Horizontal Surface under 
Windy Condition 

 Min(m) 
25th 
Percentile(m) Median(m) 

75th 
Percentile(m) Max(m) Mean(m) Range(m) 

Horizontal 
Surface 10.48 10.75 10.97 12.69 14.56 11.47 4.08 
Vertical 
Surface 0.02 0.02 0.04 0.04 0.08 0.04 0.06 
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Figure 5-10 Box Chart of DDOW between Vertical Surface and Horizontal Surface under 
Windy Condition 

As the DDO deviation values cannot effectively separate the LiDAR data in normal weather and 
windy conditions, a new calculation method was applied based on the wind-shaking characteristics 
to analyze the influence of wind on roadside LiDAR measurement. When calculating the DDOW, 
the maximum measurement distance of all frames of the same laser ID at the same azimuth angle 
minuses the minimum measurement distance, as shown in Equation 5-2. 

𝐶𝐶𝑤𝑤𝛿𝛿 = 𝐶𝐶𝑓𝑓𝑡𝑡𝑥𝑥 − 𝐶𝐶𝑓𝑓𝑖𝑖𝑡𝑡        (Equation 5-2) 

where 

Dwδ is the DDOW at the δ degree; 

δ is the specific azimuth value; 

Dmax is the maximum distance value for all frames of the same laser ID at the same azimuth angle; 

Dbase is the minimum distance value for all frames of the same laser ID at the same azimuth angle. 

The validation analysis used the same data collected at Coogan Dr & Boulder Hwy intersection. 
Three sets of 600 frames of CSV data were selected from June 15, 2020, June 28, 2020, June 20, 
2020, and June 14, 2020, for the normal weather condition, 20mph, 40mph, and 60mph wind 
speeds. The results are shown in Figure 5-11. Obvious DDOW differences exist for the normal 
weather and different wind speed conditions. This new calculation method allows accurate 
classification of normal weather and windy conditions. 
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Figure 5-11 Median Value of DDOW for Normal and Three Wind Speed 

According to the analysis, the sensor vibration caused by wind mainly impacts laser beams 
reaching horizontal surfaces but not vertical surfaces. Therefore, classification of wind LiDAR 
data and normal weather LiDAR data can use the distance measurement offsets of ground surfaces. 
As an example, we used two sets of sample data from windy and normal weather for comparison. 
The two sets of sample data are from June 14, 2020 (Windy), June 15, 2020 (Normal) at the 
Coogan Dr & Boulder Hwy intersection, with the same laser and same azimuth angles to the 
horizontal surface. Figure 5-12 shows the comparison results: under normal conditions, the 
distance offset of the horizontal surface was less than 1 meter, and in the windy condition, the 
distance offset of the horizontal surface was 9-15 meters.   

 

Figure 5-12 DDOW results between Normal and Windy Weather Conditions on Horizontal 
Surface 

Based on all the analysis on characteristics of LiDAR data in different weather conditions, an 
automatic data monitoring program can be developed with the steps presented in Figure 5-13. 
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Figure 5-13 Flow Chart of Identification Method 
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6. IMPROVED LIDAR PROCESSING ALGORITHMS 

6.1. Improved Background Filtering  
In order to detect interesting target objects such as pedestrians and vehicles efficiently and 
effectively, the first step in roadside LiDAR data processing is to exclude background information 
because the background objects within the fixed roadside LiDAR sensor’s detection range are 
almost unchanged. Since the number of data points collected from the target objects using roadside 
LiDAR sensors is limited compared with a large portion of unrelated backgrounds, it is necessary 
to filter the background points from the raw LiDAR data so that the processing speed and accuracy 
of analyzing the remaining small amount of target object points in the following steps.  

UNR previously developed a 3D density statistic filtering method for roadside LiDAR data, and 
the main steps included frame aggregation, points density statistic, threshold learning, and real-
time filtering. The 3D space was divided into continuous cubes, and the density threshold of 
background points in each cube was the key to making decisions about keeping or deleting raw 
LiDAR data. The computational expense and filtering accuracy of the whole filtering process 
heavily depended on the length of the cube: the smaller the cube length requires higher 
computational cost of searching and larger memory, with increased filtering accuracy. The project 
researchers also proposed a real-time Azimuth-Height background filtering method by comparing 
the heights between raw LiDAR data and background objects. Three aspects need to be improved 
are: 1) the height information of each data point cannot be obtained through parsing raw data 
directly, which means extra computational time is needed; 2) an ideal background frame without 
target objects is sought; 3) filtering dynamic background objects such as waving bushes is 
challenging. 

This project developed an innovative real-time Azimuth-Channel-Distance background filtering 
method for roadside LiDAR sensing systems. Saving the 3D coordinate information of 3D point 
clouds into a 2D table based on azimuth angle (rows) and laser channel properties was the basis of 
increasing processing speed and reducing computer memory in this new background filtering 
method. A 2D background table recording the distance information of background objects was 
generated automatically without manually finding the no-traffic data frames. When parsing the 
original LiDAR files, distance comparison was executed between raw data points and the 
corresponding background object points which were shot by the same laser beam and located 
within the same azimuth interval. Finally, only target points were further parsed and saved in the 
dataset. In addition, the performance of filtering dynamic background objects was improved by 
integrating data frames over a period of time so that the small vibration of the dynamic background 
objects can be captured more precisely. A comprehensive case study showed the effectiveness and 
efficiency of filtering background objects and keeping target objects at the same time using two 
types of LiDAR data. The filtered roadside LiDAR data can be further analyzed to generate high-
resolution, high-accuracy trajectories of all road users, valuable information for 
connected/autonomous vehicles, traffic signal design, driver and pedestrian behavior analysis, etc. 

LiDAR Sensor 

The LiDAR sensor uses an array of a certain number of infra-red lasers paired with infra-red 
detectors to measure distances to objects. The device is mounted securely within a compact, 
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weather-resistant housing. The array of laser/detector pairs spins rapidly within its fixed housing 
to scan the surrounding environment and provide a rich set of 3D point data in real time. 

To determine the performance of a LiDAR sensor from a mechanical aspect, the number of 
channels, vertical field of view (VFOV), and vertical resolution of laser beams are the main factors 
considered for LiDAR selection. In general, the more laser channels with larger vertical FOV and 
smaller vertical resolution, the more data points can be collected. Users can customize the rotation 
frequency of LiDAR sensors: the lower rotation frequency (i.e., slower rotation speed) means more 
data points can be collected when using the same type of LiDAR. The manufacturers claim the 
measurement range of LiDAR sensors, but it does not mean all the objects within this range can 
be identified and tracked successfully. Due to the laser’s beam divergence, a single laser firing 
often hits multiple objects producing multiple returns. The LiDAR sensor analyzes multiple returns 
and reports either the strongest, last, or both returns [2]. 

LiDAR Data 

In general, LiDAR sensors output two types of packets: data packets and position packets (also 
called GPS packets). The data packet contains the 3D data measured by the LiDAR sensor as well 
as the calibrated reflectivity of the surface from which the light pulse was returned. The position 
packet is used to verify that the LiDAR sensor is receiving valid time updates from a GPS receiver. 

One data frame is generated after the sensor completes a 360° scan and the collected point clouds 
are stored in a packet capture (pcap) file, whose size is determined by the time of data collection 
and the number and complexity of the surrounding objects. There are two steps for parsing pcap 
files to obtain raw LiDAR data: 1) obtain azimuth (𝛼𝛼), elevation angle (𝜔𝜔), 3D distance (𝑅𝑅) 
between the object and the LiDAR sensor, timestamp, and intensity information; 2) a computation 
is necessary to convert the spherical coordinates to Cartesian coordinates using the Equation 6-1 
to Equation 6-3.  

𝑋𝑋 = 𝑅𝑅 × cos(𝜔𝜔) × sin(𝛼𝛼)                                                                              (Equation. 6-1) 

𝑌𝑌 = 𝑅𝑅 × cos(𝜔𝜔) × cos(𝛼𝛼)                                                                            (Equation. 6-2)           

             𝑍𝑍 = 𝑅𝑅 × sin(𝛼𝛼)                                                                                              (Equation. 6-3) 

where (R,ω,α) represents the location of the data point in spherical coordinates; (X, Y, Z) 
represents the location of the data point in Cartesian coordinates. 

In other words, the azimuth, elevation angle, and 3D distance properties of each point can be 
obtained directly from parsing the original LiDAR data file, while information such as 3D 
locations of each point in Cartesian coordinate systems needs further analysis. In this regard, it is 
not necessary to calculate and save Cartesian coordinates of all raw data since the data points from 
the background objects will be deleted after the background filtering process. Therefore, the 
proposed Azimuth-Channel-Distance background filtering method was developed to classify 
background and target (non-background) points based on the obtained direct information after 
parsing the file.  

LiDAR data are point clouds. (X, Y, Z) in 3D Cartesian coordinate systems and (R,ω,α) in 
spherical coordinate systems can determine the same location of the data point, respectively. In 
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general, the 3D Cartesian coordinates of a LiDAR dataset are usually described by a 3D matrix (as 
shown in Figure 6-1(a)), which may require a large storage memory and a high computational cost 
for searching using an index table.  

 
Figure 6-1 A 3D matrix representing LiDAR data 

From another perspective of viewing LiDAR data, we proposed a new data structure to describe 
the locations of 3D point clouds using a 2D table/matrix based on the inherent properties of the 
LiDAR data: each row of the table represents each azimuth interval of the laser beams during 0° 
to 360° scan; each column of the table indicates each elevation angle/channel of the laser beams; 
the content of the table is the 3D distance (LiDAR sensor to an object surface) value of the data 
point (as shown in Figure 6-2). In this way, the distance values of the data points which were shot 
by the same laser beam at the same azimuth interval are recorded in the same location/element of 
the 2D table. 

 
Figure 6-2 A 2D table representing LiDAR data 

For a LiDAR sensor installed at the roadside, background objects within the sensor’s detection 
range are almost unchanged. In this research, we only considered road users (e.g., vehicles and 
pedestrians) as target objects, and all the other objects are background objects. To be more specific, 
background objects can be classified into two categories: static background objects (e.g., buildings 
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and ground surfaces) and dynamic background objects (e.g., waving bushes and trees). The goal 
of background filtering for roadside LiDAR data is to exclude background objects to the maximum 
while ensuring the completeness of the target objects as much as possible at the same time.  

Two main steps of the proposed background filtering algorithm are Background table generation 
and Real-time background filtering. In generating a background table, the initial background table 
recognizes the locations of static background objects and then updates the final background table 
by adding dynamic background information. The proposed background filtering process was 
performed using the obtained final background table while parsing the original LiDAR file, and 
only target data were saved. The flowchart of the whole process is demonstrated in Figure 6-3.  

 
Figure 6-3 Flowchart of the improved background filtering method 

Background Table Generation 

For a specific LiDAR sensor, a 2D blank background table can be created based on the sensor’s 
configuration and rotation frequency. The proposed initial background table was designed to 
record a distance threshold in each element to distinguish static background objects and other 
objects. It needs to be noted that the vertical angle between laser beams does not need to be the 
same. Different vertical angles between laser beams are common in new LiDAR sensors.  

After parsing the LiDAR packet, the 3D distance value of each data point was saved in a 2D table 
based on the azimuth and channel information. However, even for a static object, the laser beams 
shot at the object during each rotation cannot be guaranteed to return, thus the number of data 
points collected in each 360-degree scan was not exactly the same in general. In order to find more 
accurate locations of the static background objects, we integrated continuous raw LiDAR data 
frames for analysis. The number of integrated data frames depended on the actual application case. 
For example, we can determine how many data frames are needed based on the cycle length of the 
traffic signal at the intersection. In this way, the distance values saved in the same element of the 
2D table were from the objects which were located within the same azimuth interval and shot by 
the same laser beam. Figure 6-4 show the distribution of collected distance values of a building 
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(static background object) from two representative elements. The x-axis and y-axis in the plot 
represent frame number and distance value, respectively. In Figure 6-4(a), without any occlusion, 
the collected distance values of a building corner were varied within a very small interval (about 
10cm). In Figure 6-4 (b), the building edge was blocked by passing or stopped vehicles, so the 
locations of the collected data points from the vehicles were closer to the LiDAR sensor compared 
with the building edge since the laser beams cannot penetrate the vehicles and continue to shoot at 
the building edge. 

 
Figure 6-4 Examples of background distance measurement 

To find the distance threshold in each table cell, firstly, we segmented all the data in each element 
based on the distance values and sorted the obtained groups from the minimal distance to the 
maximal distance. If the number of data points in the last group (i.e., the farthest one from the 
LiDAR sensor) is greater than a point threshold which was defined as a large percentage of the 
total number of data frames for integration, then this group of data points was considered to have 
been collected from static background objects. Secondly, the distance threshold was chosen as the 
minimal distance value of that group. The reasons for this judgment are: 1) the number of data 
points collected from static background objects during a certain period of time should be far greater 
than the number of points collected from target objects; 2) the location of the static background 
objects should be the farthest from the LiDAR sensor; 3) choosing the minimal distance of the 
selected group as the threshold can filter this group of data itself. Using this criterion, the minimal 
distance value of the qualified farthest group in each element was used to update the blank 
background table; thus, an initial background table was generated. For example, in Figure 6-4(b) 
case, the farthest group was made up of the building edge (2,587 data points were collected from 
3,000 frames), and the distance threshold in the corresponding element was 19.18 meters from the 
LiDAR sensor.  

Dynamic Background Identification 

Using the obtained initial background table, static background objects can be excluded from the 
selected data frames of integration (the filtering criteria will be introduced in Section 3.3). The 
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remaining LiDAR data included target objects, dynamic background objects, and some noise 
points. The purpose of processing the remaining data is to find the location of dynamic background 
objects and update the initial background table by adding dynamic background knowledge. Due 
to the properties and motion patterns of dynamic background objects, the variation of measured 
distance of dynamic background objects is much larger than that of static background objects. 
Figures 6-5(a) and 6-5(b) show the measure distances of dense and sparse bushes from the LiDAR 
sensor, respectively. According to Figure 6-5(b), the largest distance difference from the same part 
of the low-density bushes can be up to nearly 0.4 meters, which was caused by heavy wind. 
Therefore, it is not accurate to use only one data frame to capture the location of dynamic 
background objects in practice. 

 
Figure 6-5 Demonstration of two different dynamic background measurements 

To identify dynamic background objects completely and accurately, we applied a density-based 
clustering method, density-based spatial clustering of applications with noise (DBSCAN) [2], to 
the same set of aggregated LiDAR data frames (collected in a period of time) in which static 
background points have been excluded. One advantage of DBSCAN is this method does not need 
to predefine the number of clusters, which is especially useful for transportation application since 
it is almost impossible to predict the number of target objects. Target objects (e.g., pedestrians and 
vehicles) move in general, while dynamic background objects (e.g., bushes) are almost stationary, 
even though they may have some shaking movements. Based on the distribution of clustered data 
points in 3D space, three features were extracted from the obtained clusters to distinguish dynamic 
background objects and target objects using Extra Trees (Extremely Randomized Trees) classifiers. 
This classifier is an ensemble deep learning method based on Decision Trees [3] and considered 
as a variant of Random Forest [4]. Similar to Random Forest, they all build multiple trees and split 
nodes using subsets of features. But the Extra Trees method does not bootstrap observations and 
nodes are split randomly (not the best split), which lead to lower computational cost and variance 
of the model [5]. 
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After classification, the minimal distance of each dynamic background object cluster was used to 
update the distance threshold in the corresponding element of the initial background table, thus a 
final background table including the distance information of both static and dynamic background 
objects was generated. In summary, the whole flowchart of developing background table is 
demonstrated in Figure 6-6. 

 
Figure 6-6 Flowchart of background table generation 

 
Evaluation of Filtering Accuracy 

In order to evaluate the performance of the proposed background filtering method, we chose some 
data frames in which vehicle and pedestrian target objects were located at different distances from 
the LiDAR sensor. Due to the mechanical characteristic and working principle of the LiDAR 
sensor, the density of point clouds is decreased as the distance from the LiDAR sensor increases. 
How many data points can be collected from the target object depends on several factors such as 
the distance between the sensor and the object, the size of the object, sensor’s installation, 
occlusion, etc. Our goal is to filter the background points to the maximum and keep the same 
amount of target points at the same time. If the target points are excluded, they cannot be recovered, 
while a small amount of remaining background points (noise) can be further deleted in the 
following procedure. Table 6-1 lists the background filtering rate and target retention rate for target 
objects at different distances using the data collected by VLP-16 and VLP-32C LiDAR sensors. 
In general, most of the background points had been filtered successfully and the target points were 
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well maintained within the valid detection ranges. Besides, we found that it is challenging to filter 
the background objects and keep the target objects at the same time if they are located very close 
to each other. 

Table 6-1. Filtering Results Evaluation for Target Objects at Different Distances 

 
Location 

 

Target 
object 

Background points 
before/after  

Background 
filtering rate 

Target points  
before/after 

Target 
retention rate 

 
 
 
 
 

Site 1 
(VLP-16) 

Vehicle 1 
8.5m 27614/69 99.75% 452/449 99.34% 

Vehicle 2 
17.9m 26999/73 99.73% 166/160 96.39% 

Vehicle 3 
45.7m 27352/63 99.77% 69/62 89.86% 

Pedestrian 1 
6.4m 27558/51 99.81% 41/41 100.00% 

Pedestrian 2 
15.7m 27001/60 99.78% 20/19 95.00% 

Pedestrian 3 
25.6m 27235/65 99.76% 6/5 83.33% 

 
 
 
 
 
 

Site 2 
(VLP-32C) 

Vehicle 1 
7.5m 55190/134 99.76% 427/425 99.53% 

Vehicle 2 
29.5m 56001/145 99.74% 161/158 98.14% 

Vehicle 3 
75.5m 55581/138 99.75% 15/13 86.67% 

Pedestrian 1 
4.2m 56568/155 99.73% 55/55 100.00% 

Pedestrian 2 
14.8m 56005/146 99.74% 37/37 100.00% 

Pedestrian 3 
35.3m 55894/131 99.77% 17/15 88.24% 

Evaluation of Filtering Speed 

Since the roadside LiDAR sensing system is designed to detect and track road users in real-time, 
fast processing speed is an important factor for deployment. To examine the speed of data parsing 
with the judgment of classifying background points and target points, the authors implemented the 
proposed algorithm in Matlab and recorded the computational time on a regular Dell desktop (Intel 
Core i7-4790 CPU (3.60 GHz) and 16 GB of RAM). It took only about 0.65 millisecond and 0.90 
millisecond to process one single data frame collected by 16-channel and 32-channel LiDAR 
sensors in average. With the 10Hz rotation frequency (0.1 second/frame) of the sensors, such a 
background filtering speed lays a solid foundation for the following procedure like object 
clustering and tracking. In Wu’s paper [9], with the same computer configuration, the processing 
speed of filtering 16-channel LiDAR data is about 100 millisecond per frame. Therefore, our new 
background filtering method using 16-channel LiDAR data has increased the computational speed 
by approximately 150 times, which makes it possible to use in practice. The main contributor for 
this fast computation is that the unrelated background points from the raw data do not need to be 
further analyzed after data parsing. 
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6.2. Improved Object Classification 
Among traffic study and performance evaluation using offline trajectory data, one challenge is 
how to accurately classify all road users as far as possible. In general, large-sized road users (e.g., 
vehicles) are relatively easy to be identified than small-sized road users (e.g., pedestrians and 
cyclists) because the moving direction and appearance of small-sized road users are constantly 
changing. In addition, road users who are located near the sensor and are not occluded by other 
objects are more likely to be classified into correct category since the information collected by 
sensors is more comprehensive and reliable.  

In terms of on-board sensing systems, the classification can be achieved by LiDAR-Vision or 
LiDAR standalone sensing systems. In the classic LiDAR-Vision on-board sensing systems, two 
sensors are working together in a centralized or a decentralized way. The centralized way means 
the sensor fusion process occurs at the feature level, that is, features extracted from LiDAR and 
video data are combined in a single vector for posterior classification using a single classifier [9]. 
The decentralized way means two classifiers are trained with LiDAR and video data individually, 
and then the final classification results are combined through a set of fusion methods [10]. For the 
standalone LiDAR on-board sensing systems, the major approach to classifying different types of 
road users is feature-based machine learning classification. Most of the features used in previous 
studies are related to the shape or dimension profile (e.g., length, height, symmetry) of different 
parts of the object [11,12], and popular classifiers include Support Vector Machine (SVM), Naïve 
Bayes (NB), K-nearest neighbor classification (KNN), Random Forest (RF), artificial neural 
network (ANN), etc. 

In this project, a feature-based offline classification method combined with historical trajectory 
information was developed to classify vehicle, pedestrian, cyclist, and wheelchair using roadside 
LiDAR sensors (as shown in Figure 6-7). Taking into account the information provided by 
historical trajectories, the impact of occlusion on the classification accuracy can be reduced to 
some extent. Through extracting effective features and training four classifiers using field data, we 
found that the dimension characteristic, especially the 2D length feature, can greatly improve the 
classification accuracy if the entire trajectory is considered. The AdaBoost and RUSBoost methods 
were recommended for classifying imbalanced datasets.   

 
Figure 6-7. Examples of different road user clusters collected by 32-laser roadside LiDAR 

sensor 

Feature Selection 
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For supervised classification tasks, feature selection is a critical step in training classifiers. Good 
features should be able to effectively distinguish different classes and can be easily obtained from 
datasets. LiDAR sensors are good at accurately capturing the surface shape of objects, therefore, 
we extracted seven features (five of them are related to dimensionality) from the point cloud of 
clusters for vehicle/pedestrian/cyclist/wheelchair classification. 

• Feature 1 (3D distance): the average distance value of each cluster from LiDAR sensors. 

• Feature 2 (Point count): the total number of data points in each cluster. 

• Feature 3 (Direction): the direction of the clustered points’ distribution. With the least-

square linear regression method, a linear function can be generated to describe the main 

distribution direction of each cluster. 

• Feature 4 (Height): The difference between the maximal and minimal height (Z value) of 

each cluster.  

• Feature 5 (Height variance): the variance of the maximal height of each sliced cluster along 

the 2D length direction, as shown in Figure 6-12 (right). 

• Feature 6 (2D length): the longer side of the bounding box (e.g., the minimum rectangle 

that covers all clustered points based on the minimal and maximal values projected on XY 

plane) of each cluster, as shown in Figure 6-12 (left). 

• Feature 7 (2D area): the 2D area of the bounding box of each cluster. 

 
Figure 6-8. Features extracted from clusters 

Classification Methods 
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In this study, four supervised classification methods were selected, namely artificial neural 
network (ANN), random forest (RF), adaptive boosting (AdaBoost), and random undersampling 
boosting (RUSBoost) for vehicle/pedestrian/cyclist/wheelchair classification. This section will 
briefly introduce those methods. 

Artificial Neural Network (ANN) 

ANN is a multilayer feedforward neural network composed of an input layer, a hidden layer, an 
output layer, and neurons in each layer. Input data are fed into the input layer. The activity of each 
hidden layer is determined by the inputs and the weights that connect the input layer and hidden 
layer. A similar process takes place between the hidden layer and the output layer, and the 
transmission from one neuron in one layer to another neuron in the next layer is independent. The 
output layer produces the estimated outcomes. The comparison information (error) between the 
target outputs and the estimated outputs is given back to the input layer as a guidance to adjust the 
weights in the next training round. Through each iteration, the neural network gradually learns the 
inner relationship between the input and the output by adjusting the weights for each neuron in 
each layer to reach the best accuracy. When the minimum error is reached, or the number of 
iterations is beyond a predefined range, the training process is terminated with fixed weights. 

Random Forest (RF) 

Random forest is an ensemble learning method for classification, regression, and other tasks that 
operates by constructing a multitude of decision trees at training time. For classification tasks, each 
individual decision tree in the random forest spits out a class prediction and the class with the most 
votes become the output of the random forest. Essentially, random forest enables a large number 
of weak or weakly-correlated classifiers to form a strong classifier, and generally outperforms 
decision trees, but its accuracy is lower than gradient boosted trees. In addition, the computational 
cost of running random forest on large datasets is low.  

Adaptive Boosting (AdaBoost) 

AdaBoost is an ensemble learning method which was initially created to increase the efficiency of 
binary classifiers. AdaBoost uses an iterative approach to learn from the mistakes of weak 
classifiers, increase weights for misclassified observations and reduce the weights for correctly 
classified observations, and turn weak classifiers into strong ones. In terms of AdaBoost for 
multiclass classification, instead of weighted classification error, weighted pseudo-loss is used as 
a measure of the classification accuracy from any learner in an ensemble. AdaBoost is fast, simple, 
and easy to implement and has the flexibility to be combined with other machine learning 
algorithms, but it is sensitive to noisy data and outliers.  

Random Undersampling Boosting (RUSBoost) 

Random undersampling boosting is especially effective at classifying imbalanced data, meaning 
some classes in the training data have much fewer members than others (Seiffert et al., 2013). The 
algorithm takes N observations in the class with the fewest observations in the training data, as the 
basic unit for sampling. Classes with more observations are under sampled by taking only N 
observations of every class. In other words, if there are K classes, for each weak learner in the 
ensemble, RUSBoost takes a subset of the data with N observations from each of the K classes. 
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The boosting procedure follows the procedure in AdaBoost for multiclass classification for 
reweighting and constructing the ensemble.  

Classification considering historical trajectory information  

This project proposed to update significant features according to the properties of continuous 
tracking trajectories. To be more specific, during the feature extraction step, the feature 6 (2D 
length) of each sample in both training set and testing set was updated to the maximum value of 
all detected lengths within the corresponding trajectory. Then the same training and testing process 
was applied. 

Using the modified features as input, the recalls of four types of road users using the same 
classification methods are listed in Table 6-2, that shows that the recall rates of cyclist and 
wheelchair were all above 99% when using AdaBoost and RUSBoost classifiers, which was a huge 
improvement compared with the previous results in Table 3(a). This indicated the effectiveness of 
updating features by considering historical trajectory information to increase classification 
accuracy.  

Table 6-2. Classification recall rates considering historical trajectory information 

Trajectory 
Length Classifier Vehicle Recall Pedestrian 

Recall Cyclist Recall Wheelchair Recall 

Greater 
than 20 
frames 
(2.0s) 

ANN 99.79%  (+0.24%) 97.89% (+0.38%) 44.56% (+20.98%) 74.96% (+1.27%) 
RF 100% (+0.14%) 99.85% (+1.85%) 94.82% (+54.66%) 98.02% (+16.83%) 
AdaBoost 100% (+0.24%) 99.96% (+2.56%) 100% (+52.33%) 99.86% (+17.68%) 
RUSBoost 100% (+0.21%) 100% (+8.44%) 99.74% (+33.68%) 99.43% (+17.11%) 

Note: The value in the parentheses represents the increased recall value compared to Table 3(a). 

In classifying four types of road users, distinguishing small-sized road users (e.g., wheelchair, 
pedestrian and cyclist) is the most challenging task. Due to the inherent characteristic of LiDAR 
sensors, as the distance between the object and the sensor increases, the density of point cloud 
drops sharply. In addition, the moving direction of road user relative to the scanning direction of 
laser beams also affects the detection quality: perpendicular movement can generally collect more 
data points from objects than parallel movement and more data points mean a fine description of 
objects. It is not difficult to find that the wheel part of the wheelchair cluster was not fully detected 
so that the main shape/dimension difference between the wheelchair and the cyclist/pedestrian is 
not obvious. Through checking the raw LiDAR stream, the entire movement  routes of these two 
wheelchairs were not well covered in the detection range of the LiDAR sensor. This may be the 
main reason for the misclassification of these wheelchairs, especially at a far distance.  
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7. DATA QUALITY EVALUATION AND COMPARISON WITH VIDEO SENSING 
This section compares the trajectory outputs from one LiDAR sensor and four cameras at the same 
intersection during the same time (Figure 7-1), in terms of general location accuracy, volume 
counting accuracy, detection range, and speed. Both the frequency of LiDAR-based and Vision-
based trajectory data is 10 Hz. Trajectories were demonstrated in Figure 7-2 Since the studied size 
of the intersection is too large that the camera cannot cover the separate right-turn lanes, the right-
turn vehicles are not considered in this study. 

 

Figure 7-1 LiDAR and camera sensors installed at the same intersection (Pyramid Way 
and Los Altos Road, Sparks, NV) 

Figure 7-2 shows two 30-min data from 12:00 am to 12:30 pm on December 23 (left) and from 
4:00 am to 4:30 am on December 24th (right), the pink points represent Lidar output, the green 
points represent camera output. Based on the general observation, both LiDAR and camera 
trajectories fit the lane well. The detection range of vision-based trajectory is shorter than the 
detection range of LiDAR in both daytime and nighttime conditions. The specific analysis of the 
detection range is evaluated and discussed later in this article. 
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Figure 7-2 Daytime (left) and nighttime (Right) trajectory overview 

Vehicle Volume Count Accuracy 

Although the volume counts are not automatically generated, they can be gathered by counting the 
different object IDs in each lane. Some detection zones are set up in the ArcGIS software, which 
is shown in Figure 7-3. The number of different objects in each detection zone can be counted by 
ArcGIS built-in function automatically so that the volume of each movement can be obtained. Two 
volume counts are compared with the ground truth volume data, which is manually counted by our 
team. 
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Figure 7-3 Detection zones for counting the volume 

The results of volume count accuracy are shown in Figure 7-4 and Figure 7-5. each column stands 
for the percentage of accuracy the sensor achieved in the northbound through (NBT), northbound 
left turn (NBL), southbound through (SBT), southbound left turn (SBL), eastbound through (EBT), 
eastbound left turn (EBL), westbound through (WBT) and westbound left turn (WBL), 
respectively. For the daytime peak time (12:00 pm to 12:30 pm) on December 24th, both vision-
based and LiDAR-based output perform well, achieving an accuracy rate of more than 96% for all 
movements. For most movements, LiDAR performs slightly better than computer vision, but in 
Eastbound left turn, Northbound through, and Northbound Left turn, cameras show better accuracy. 

Figure 7-4 Volume Count Accuracy for Daytime Volume (Dec 24th 12:00pm - 12:30pm) 
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For the nighttime (3:00 am to 3:30 am) on December 24th, by comparing with manually counted 
volume, it shows that lidar reaches 100% accuracy for all movements. Cameras also reached 100% 
for all movements except southbound through. For southbound through, the accuracy is only 
81.5%, which only captured 22 out of the 27 vehicles. 

Figure 7-5 Volume count accuracy for nighttime (Dec 24th 3am - 3:30am) 
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Detection Range 

To evaluate the detection range of two different sensors, 4 detection zones for each bound were 
set. Each zone is 50 ft long, the front edge of the first zone is the stop bar. The detection range can 
be evaluated by comparing the percentage difference of vehicles detected in different zones. 

Figure 7-6 below shows the detection rate of LiDAR for different bounds over different distances 
to the stop bar. Lidar successfully detects all vehicles at a distance of 0 to 50ft to the stop bar. With 
the distance increase, the detection n rates of these two bounds farther from the lidar installation 
position (northeast side of the intersection), northbound and eastbound, dropped more significantly. 
The detection rate of eastbound dropped to 53% from 50ft to 100ft to the stop bar and further 
dropped to 11% when the detection range was between 100ft and 150ft to the stop bar. Detection 
range of northbound dropped from 88% of 50-100 ft to 14% of 100-150ft to stop bar. When the 
detection range is 150 to 200ft to the stop bar, both detection rates of the northbound and eastbound 
drop to 2%, southbound and westbound still perform well, which is 84% and 96%, respectively.  

Figure 7-6 Lidar vehicle detection rate for each bound (12/23/2020 12:00 pm to 12:30 pm) 
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As shown in Figure 7-7, Lidar performed similarly during the night as the day: two bounds closer 
to lidar installation location (northeast side of the intersection) show better performance, the 
westbound keeps detection rate of 100% in four zones, southbound maintains detection rate of 100% 
in the first three zones (0 to 150 ft) and decreases to 79% in the fourth zone (150 to 200 ft). The 
performance of northbound and eastbound is slightly better than that in the daytime. The detection 
rate of eastbound is 100% in 0 to 150 ft to stop bar, but it is 0% in the area of 150 to 200 ft to stop 
bar. North bound’s detection rate dropped from 100% to 42% at 100-150 ft to stop bar and kept 
dropping to 17% at 150-200 ft to stop bar.  

Figure 7-7 Lidar vehicle detection rate for each bound (12/24/2020 3:00 am to 3:30 am) 
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The performance of vision-based trajectory is worse than LiDAR. Figure 7-8 shows the detection 
rate of cameras from 12/23/2020 12:00 pm to 12:30 pm. even in the area of 0 to 50ft to the stop 
bar, some vehicles cannot be detected, which means that a significant portion of vehicles can only 
be detected after they have entered the intersection. The detection rate of four bounds sharply when 
the distance to the stop bar is greater than 50 ft. Very few vehicles can be detected over 100 ft to 
the stop bar. 

Figure 7-8 Camera vehicle detection rate for each bound (12/23/2020 12:00 pm to 12:30 
pm) 
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The performance of the vision-based detection rate at night is worse than that in the daytime 
(Figure 7-9). For westbound, only 20% of the vehicles (1 vehicle out of 5)can be detected before 
reaching the stop bar. The detection rates of both eastbound and westbound above are 0 when the 
detection range is 50ft or longer to the stop bar, and that of northbound and eastbound is only 8% 
and 7%, respectively. 

Figure 7-9 Cameras Detection Range for each Bound (12/24/2020 3:00 am to 3:30 am) 
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Pedestrian Detection  

Pedestrian detection plays a very important role in the traffic safety analysis. In this study, 4-hour 
daytime and 4-hour nighttime data are selected to compare the performance of two sensors in 
pedestrian detection. Figure 10 shows the pedestrian crossing trajectories from 12/23/2020 12:00 
PM to 4:00 PM. After comparing with the manually counted value, both LiDAR and computer-
vision captured all the pedestrian activities. LiDAR can capture the pedestrian before they enter 
the intersection, but for the camera, the trajectory length of pedestrians is much shorter. Some 
pedestrians can only be captured after walking on the crosswalk, as shown in Figure 7-10.  
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Figure 7-10. Pedestrian crossing trajectories captured by Lidar(green) and Camera (Red) 

For the nighttime from 12/24/2020 12:00AM to 4:00 AM, there are 4 pedestrian crossing happened, 
the LiDAR captured all of them, but none of them was captured by camera.  

Speed  

Since the trajectory data is the location point of the road users every 0.1 seconds, the speed 
information can be calculated by calculating the distance difference over time difference.  Figure 
13 shows trajectories of one southbound left-turn vehicle captured from both LiDAR and Video. 
Based on the trajectory data, the speed of the sample vehicle in each frame is calculated, which is 
shown in Figure 14. Since the offset of the location information can significantly affect the result 
of calculated speed, the speed is smoothed by MA (Moving Average) method in order to get closer 
to the real value. The raw speed and smoothed speed information are shown in Figure 7-11 and 
Figure 7-12.  
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Figure 7-11 Same Vehicle trajectories captured by LiDAR (left) and computer vision 
(right) 

 

From the raw data, it can be seen that the magnitude of speeds calculated by the two sensors is 
similar. LiDAR has greater fluctuation, but its trajectory length is much longer than that of 
computer vision. It can be seen from the figure that LiDAR can capture the whole procedure of 
the vehicle, from decelerating towards the intersection, stopping at the intersection, and finally 
accelerating out of the intersection, which is important for intersection-level analysis. 

Figure 7-12 Speed of the sample vehicle calculated based on trajectory location. 
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Figure 7-13 Smoothed speed of the sample vehicle 
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For pedestrian detection, since the size of the pedestrian is much smaller than that of vehicles, the 
point that Lidar reflects from the pedestrian will also be significantly reduced, which reduces the 
potential distance offset caused by the fluctuation of the reference point chosen on the object, thus 
the pedestrian speed detection of LiDAR is more accurate than vehicle speed detection. As shown 
in Figure 7-14, Lidar shows very good speed detection of pedestrians, on the contrary, the camera 
does not perform well in speed detection of pedestrians, the detected pedestrian speed is 
significantly higher than the normal walking speed of pedestrians (around 3-4 mph). In addition, 
due to the short detection range of the camera, the camera can only capture the data of pedestrians 
walking on the crosswalk. As shown in Figure 7-15, the camera cannot cover the pedestrians 
entering the island or how long the pedestrians waiting to cross.  

Figure 7-14 Sample pedestrian speed 
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Figure 7-15 Sample pedestrian trajectories captured by LiDAR (left) and Camera (Right) 

Although from a data comparison point of view, the LiDAR-based trajectory appears to be more 
dominant, data quality is not the only criterion when considering which data source to choose. 
Factors such as data storage, installation and maintenance accessibility are all need to be 
considered. Combined with the data quality analysis above and other factors, Table 7-1 provides 
a general recommendation for other researchers to refer to when choosing which type to use. Cells 
with one black dot mean that this type of data source shows good performance in such assessment. 
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Table 7-1 Reference table for LiDAR-based and Vision-based trajectory data 

 LiDAR-
based 

Vision-
based 

Comments 

Device Cost 
 

● Cameras are currently much cheaper than LiDAR 
Installation and 
maintenance 
accessibility 

● ● Installation takes about 30 minutes 

Data storage ● 
 

Video needs much more storage space for same time 
period than LiDAR since for one intersection at least 4 
cameras are needed 

Detection Range ● 
 

Lidar shows longer detection range 
Daytime 
Vehicle Volume 

● ● Both sensors show good daytime vehicle counting 
capability 

Nighttime 
Vehicle Volume 

● 
 

Cameras may miss some vehicles at night 

Daytime 
Pedestrian 
Volume 

● ● Both sensors show good daytime pedestrian counting 
performance 

Nighttime 
Pedestrian 
Volume 

● 
 

The camera barely recognizes pedestrians at night 

Vehicle Speed ● ● Both sensors generate decent vehicle speed 
information 

Pedestrian 
Speed 

● 
 

LiDAR shows brilliant speed detection for relatively 
small objects such as pedestrians/bicyclist 
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8. TRAFFIC PERFORMANCE MEASUREMENT WITH LIDAR DATA 
UNR performed a trajectory-based traffic study at Pyramid Way and Calle De La Plata. LiDAR 
data collection covered 24-hour traffic information on Saturday, August 29, Sunday, August 20, 
Tuesday, September 1, and Wednesday, September 2, 2020. The study findings are summarized 
as the following: 

Vehicle traffic volumes – highest traffic volumes were observed with northbound through 
movement, northbound left-turn movement, southbound through movement, and eastbound right-
turn movement. The four movements' daily traffic volumes were 4,558, 4,277, 4,527, and 4,128 
on Wednesday, September 2, the highest of the four data collection days. Peak hour volumes of 
the four movements were about 400 vehicles/hour. Daily volumes of other movements were less 
than 1,000. 

Speed study – The overspeeding problem was evident with the northbound through traffic along 
Pyramid Way. With the speed limit of 55 MPH, 20.4% (3,573 out of 17,488 vehicles during the 
data collection period) northbound through vehicles crossed the intersection at speeds of 60-70 
MPH, and 1.7% (328 out of 17,488) northbound through vehicles were at speeds higher than 70 
MPH. Overspeeding of the southbound traffic was minor, with 0.8% (124 out of 17,307) 
southbound through vehicles were at speeds higher than 60 MPH. 

Much more southbound-through vehicles were slowed or stopped by the traffic signal than the 
northbound through traffic. A high volume of northbound left-turn traffic frequently called the 
northbound left-turn green signal and turned the southbound through signal to red. 

Pedestrian and bike volumes – pedestrian and bike volumes at this intersection were not high. 
Daily total volumes at the north crosswalk (crossing Pyramid Way), west crosswalk (crossing 
Calle De La Plata), and the connected sidewalks had less than 20 pedestrian and bike counts on 
each. The maximum daily total pedestrians and bikes at the crosswalks were about 30. However, 
jaywalks crossing Calle De La Plata were observed especially on the east of the intersection by 
reviewing traffic trajectories. 

Near-crash – the UNR researchers query trajectories with the criteria of crossing each other's 
trajectories in less than 3 seconds to identify possible conflict events. No near-crash was found in 
the four-day data. 

Other situations – many activities were observed at the northeast corner and the southeast corner. 
The traffic accessing the two corner areas was mainly through unpaved at Calle De La Plata. 
test 

Data Collection 

UNR deployed portable roadside LiDAR equipment at the northeast corner of the intersection, as 
shown in Figure 8-1, from 8/28/2020 Friday 6:00 PM through 9/3/2020 Thursday 9:00 AM. 
LiDAR data of multimodal traffic were collected during the period except for 8/31/2020 Monday 
when a power cable misfunctioned. The collected LiDAR data was processed to generate 
information of multimodal traffic volumes, speeds, and conflicts of traffic flow. 
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Figure 8-1. Deployed portable LiDAR sensing equipment at the intersection 
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With the collected LiDAR data, UNR generated geo-located trajectories of all road users for each 
half-hour period. Traffic data analysis zones were created for each lane, movement, and crosswalk 
in GIS to perform volume and speed analysis. An example of half-hour trajectories and analysis 
zones is shown in Figure 8-2. 

 
Figure 8-2 Sample of half-hour geo-located trajectories and traffic study zones from 

LiDAR data collection 

Vehicle Volumes 

Vehicle volumes of each movement and every half hour were extracted from trajectories. AM and 
PM peak hour volumes of all movements are shown in Figure 8-3 and Figure 8-4. Daily traffic 
volumes of all movements on Wednesday, September 3, maximum of the four data collection days, 
were summarized and presented in Figure 8-5. Figure 8-6 demonstrates 15-minute vehicle volumes 
extracted from LiDAR trajectory data. 
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Figure 8-3 AM peak hourly volumes of all movements 

 
Figure 8-4 PM peak hourly volumes of all movements 
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Figure 8-5 Daily traffic volumes of all movements 

Figure 8-6 Southbound through-lane half-hour traffic volume change 
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Vehicle Speeds 

Vehicle speeds of each vehicle for each movement were extracted from LiDAR data. The half-
hour speed distributions (15th percentile, mean, 85th percentile, and 95th percentile) were presented 
for northbound in Figure 8-7. The over-speeding problem was obvious with the northbound 
through traffic along Pyramid Way. During the daytime, 85th percentile speeds were 55-65 MPH; 
during nights, 85th percentile speeds were about 65 MPH and higher; between midnights and early 
morning, 85th percentile speeds were above 70 MPH, and the highest speeds were around 80 MPH. 
Overspeeding with the southbound through traffic was only observed between midnights and early 
morning; 85th percentile speeds during those periods were 65 MPH or lower. Therefore, the 
overspeeding problem with the southbound traffic was not as serious as with the northbound traffic. 
The exclusive eastbound right-turn lane, its curbed island and its connected southbound auxiliary 
lane may have helped drivers to reduce speeds. For drivers, the southbound through lane (south of 
the intersection) feels narrower with the auxiliary lane than the northbound through lane that is 
adjacent to its shoulder, demonstration in Figure 8-8. 

 
Figure 8-7 Northbound through traffic speed study 
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Figure 8-8 Comparison of northbound and southbound geometric elements that may have 

helped to reduce the southbound traffic speeds 

Vehicle volumes in different speed ranges of northbound through are presented in Figure 8-9. 
Average speeds lower than 40 MPH usually mean vehicles slowed or stopped at the intersection 
because of traffic signal control. It is obvious that much more southbound through vehicles were 
slowed/stopped by the traffic signal than the northbound through traffic. The high volume of 
northbound left-turn traffic frequently called northbound left-turn green signal that turned 
southbound through signal to red and slowed the southbound traffic. 

Pedestrian and Bike Volumes 

There were low pedestrian activities at the intersection during the data collection period. The 
pedestrian (including bikes) volumes at the two sidewalks and two crosswalks were extracted from 
LiDAR data. The sidewalks and crosswalks are presented in Figure 8-10 with daily pedestrian-
bike volumes. The half-hour pedestrian volumes of the sidewalks and crosswalks were presented 
in Figure 8-11 through Figure 8-14. Besides pedestrian activities along the sidewalks and 
crosswalks, multiple jaywalks (crossing roads not at crosswalks) were identified by reviewing 
LiDAR trajectories, especially on the east of the intersection. Jaywalk samples were demonstrated 
in Figure 8-15 and Figure 8-16. 
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Figure 8-9 Number of vhicles in different average speed ranges –  all northbound through 

vehicles 
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Figure 8-10 Pedestrian volume counting zones and their daily volumes 
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Figure 8-11 Half-hour pedestrian and bike volumes at the west crosswalk, north-south 
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Figure 8-12 Half-hour pedestrian and bike volumes at the northwest sidewalk, north-south 

0
1
2
3
4
5
6

8/
28

/2
02

0 
15

:0
0

8/
28

/2
02

0 
19

:3
0

8/
29

/2
02

0 
0:

00
8/

29
/2

02
0 

4:
30

8/
29

/2
02

0 
9:

00
8/

29
/2

02
0 

13
:3

0
8/

29
/2

02
0 

18
:0

0
8/

29
/2

02
0 

22
:3

0
8/

30
/2

02
0 

3:
00

8/
30

/2
02

0 
7:

30
8/

30
/2

02
0 

12
:0

0
8/

30
/2

02
0 

16
:3

0
8/

30
/2

02
0 

21
:0

0
9/

1/
20

20
 1

:3
0

9/
1/

20
20

 6
:0

0
9/

1/
20

20
 1

0:
30

9/
1/

20
20

 1
5:

00
9/

1/
20

20
 1

9:
30

9/
2/

20
20

 0
:0

0
9/

2/
20

20
 4

:3
0

9/
2/

20
20

 9
:0

0
9/

2/
20

20
 1

3:
30

9/
2/

20
20

 1
8:

00
9/

2/
20

20
 2

2:
30

9/
3/

20
20

 3
:0

0
9/

3/
20

20
 7

:3
0

Ha
lf-

ho
ur

 tr
af

fic
 v

ol
um

e

Date and Time

Pedestrian



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

77 

 

 
Figure 8-13 Half-hour pedestrian and bike volumes at the north crosswalk, east-west 
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Figure 8-14 Half-hour pedestrian and bike volumes at the northwest corner, east-west  
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Figure 8-15 Pedestrians crossing Calle De La Plata at 08/29/2020 12:00-12:30PM (east of 

the intersection)(light blue means pedestrian crossing trajectories) 

 
Figure 8-16 Pedestrians crossing Calle De La Plata at 08/29/2020 2:00-2:30 PM (east of the 

intersection)(light blue means pedestrian crossing trajectories) 
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Near Crash Identification 

Identifying conflicts between road users, especially pedestrians/bikes and vehicles, is important 
for proactive traffic safety analysis and improvement. Traffic safety issues can be identified before 
any crash happens if traffic conflict data is available. The roadside LiDAR sensing system and 
generated all-traffic trajectories allows automatic traffic conflict identification by filtering events 
with criteria of distance, speed difference, and direction difference between road users. Further 
conflict analysis can be performed by applying various near-crash analysis methods documented 
in research papers, as summarized in Table 8-1.  

Table 8-1 Summary of Traffic Conflict/Near-Crash Indicators 

Indicators* Authors Description 

Temporal Proximal based indicators 

Time-to-Collision (TTC) 1971)
Hayward (Hayward, 

The time that remains until a collision between two 
vehicles would have occurred if the collision course 
and speed difference are maintained. (Hydén, 1996) 

Time Exposed Time-to-
Collision (TET) 

Minderhoud and Bovy 
(Minderhoud and Bovy, 
2001) 

The duration of exposition to safety-critical time-to-
collision values over specified time duration. 

Time Integrated Time-to-
Collision (TIT) 

Minderhoud and Bovy 
(Minderhoud and Bovy, 
2001) 

Integral of the TTC-profile during the time it is below 
the threshold. 

Post-Encroachment Time 
(PET) 

Allen et al. (Allen et al., 
1978) 

The difference between the time when the lead vehicle 
last occupied a position and the time when the 
following vehicle first reached the same position. 

Time Difference to the Point 
of Intersection (TDPI) 

Wu et al. (Wu et al., 
2018) 

The time difference between one vehicle and one 
pedestrian reaching the same point in their trajectories. 

Time Headway (H) 
Michael et al. (Michael et 
al., 2000) 

The time that passes between two vehicles’ reaching 
the same location 

Distance based proximal indicators 

Distance between stop 
position and pedestrian 
(DSPP) 

Wu et al. (Wu et al., 
2018) 

The distance between one vehicle and one pedestrian 
when the vehicle firstly stopped before reaching the 
pedestrian 

Potential Index for Collision 
with Urgent Deceleration 
(PICUD) 

Iida et al. (Iida et al., 
2001) 

The distance between the two vehicles considered 
when they completely stop. 

Proportion of Stopping 
Distance (PSD) 

Allen et al. (Allen et al., 
1978) 

The ratio between the remaining distance to the 
potential point of collision and the minimum 
acceptable stopping distance 
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Difference of Space distance 
and Stopping Distance 
(DSS) 

Okamura et al. (Okamura 
et al., 2011) 

The difference between the space and the stopping 
distances. 

Deceleration based indicators 

Deceleration Rate to Avoid a 
Crash (DRAC) 

Almqvist et al. (Almqvist 
et al., 1991) 

Differential speed between a following vehicle and the 
leading vehicle divided by their closing time 

Crash Potential Index (CPI) 
Cunto and Saccomanno 
(Cunto and Saccomanno, 
2007) 

The probability that a given vehicle exceeds its 
maximum available deceleration rate during a given 
time interval 

Criticality Index Function 
(CIF) Chan (Chan, 2006) Multiplication of vehicle speed with the required 

deceleration 

 

Most of those indicators were originally developed for vehicle-vehicle near-crash identification, 
especially for rear-end crashes. Some of those indicators can be used or can be modified for 
vehicle-pedestrian near-crash identification. The principal criterion for selecting the indicators is 
that the indicators could be calculated with the available trajectory data. Another consideration is 
that the selected indicators should catch all the safety-critical events at different scenarios with less 
“false” reports.  

With geo-located trajectories (longitude and latitude), traffic conflict filtering and visualization 
can be easily achieved in GIS environments, such as ArcGIS software. There is no existing 
guidance to determine the thresholds of object distance, speed difference, and direction difference 
for traffic conflict identification.  

UNR analyzed all collected data to identify whether there were any near-crashes. Near-crashes 
defined in this study were that two road users crossed the same spatial location within 3 seconds, 
and they were moving in different directions. The data search only identified one candidate near-
crash event, as shown in Figure 31. After further-review trajectories in GIS, it was a left-turn after 
the opposing through traffic, although the time difference at the crossing point was less than 3 
seconds. It was not a near-crash event. To conclude, no near-crash was found in the collected 
data. 
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Figure 8-17 The suspected near-crash event that was confirmed as not near-crash in GIS 

To demonstrate a near-crash event, the UNR team applied 30ft distance, 10mph speed difference, 
and 45-degree direction difference for the preliminary filtering. However, the extracted “conflicts” 
included conflict events, with one example shown in Figure 8-18 and Figure 8-19, but also 
included noises and events that were not conflicts. Extra effort is needed to investigate the filtering 
results to further identify optimized criteria for extracting conflict events from the available 
trajectory data. 

 

Figure 8-18 Example of conflict events identified from LiDAR data at N Boulder Hwy and 
Coogan Dr – LiDAR trajectories 
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Figure 8-19 Example of conflict events identified from LiDAR data at N Boulder Hwy and 

Coogan Dr – video screenshot 

 

Other Situations 

When reviewing the data, it was found that a high volume of activities at the northeast corner and 
the southeast corner, which caused much accessing-traffic on Calle De La Platte, east of the 
intersection, as shown in Figure 8-17. There were mailboxes at the northeast corner and car sales 
at the southeast corner of the intersection, which attracted those traffic and pedestrian jaywalks. 
The traffic accessing the two corner areas was mainly through unpaved at Calle De La Plata. 
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Figure 8-20 Sample of activities at the northeast corner and southeast corner at the 

intersection, 08/28/2020 7:00 PM 
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9. AUTOMATIC RECTANGULAR RAPID FLASHING BEACON (RRFB) WITH LIDAR 
SENSING 

Site Introduction 

Green Valley Pkwy at Amargosa Trail is a pedestrian crosswalk with RRFB pedestrian signals, as 
shown in Figure 9-1 and Figure 9-2 for the aerial map and street view.  

The intersection properties are listed in follows: 

• Two through lanes in each direction of Green Valley Pkwy; a northbound right-turn lane 
and a northbound left-turn lane on the north of the crosswalk; a southbound left-turn lane 
on the south of the crosswalk 

• Raised median that is about 13-ft wide at the crosswalk, measured in Google Earth Pro 
• 35 MPH speed limit with Green Valley Pkwy 
• The closest AADT count station showed 35,000 AADT on Green Valley Pkwy in 2019 

(NDOT TRINA database) 
• Streetlights along Green Valley Pkwy 

 

 
Figure 9-1 Aerial map of Green Valley Pkwy and Amargosa Trail 
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Figure 9-2 Street view of Green Valley Parkway (facing north) 

• Separated sidewalks along with both directions of Green Valley Pkwy 
• Northbound and southbound bike lanes along Green Valley Pkwy 
• West of Green Valley Pkwy is a residential area; Paseo Verde Library, Country Fresh 

Farmers Market, Henderson Pavilion and a residential area are to the east of Green Valley 
Pkwy 

• Bicycles and pedestrians crossing Green Valley Pkwy; some bicyclists rode along Green 
Valley Pkwy and crossed the road through the crosswalk median gap but did not use the 
crosswalk. 

• Power supply available at the traffic poles on the north and south of the pedestrian 
crosswalk. Each pole is about 90 ft away from the crosswalk 

• 20 crashes in 2011 through 2017, including five B and C-injury crashes, and 15 property-
damage-only crashes (250-ft searching radius along Green Valley Pkwy)  

Hardware 

Table 9-1 lists the roadside LiDAR sensing equipment installed at Green Valley Pkwy and 
Amargosa Trail. 

Table 9-1 Equipment List for Green Valley Pkwy and Amargosa Trail 

Equipment Quantity Description 

VLP-32c 32-Channel LiDAR 2 32-channel LiDAR, provides 360-degree 

LiDAR cloud points to cover the whole 
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intersection and extend sensing distance 

along Boulder Hwy. 

New Dell Rugged Latitude 5420 

Laptop 
1 

8th Gen Intel® Core™ i7-8650U 

Processor (Quad Core, 8M Cache, 

1.9GHz,15W, vPro); 32G DDR4 

Memory; 256G solid-state hard drive; 

work temperature range is –20°F to 

145°F 

External Hard Drive 3 
WD 4TB Black My Passport Portable 

External Hard Drive 

Network Switch 1 
D-Link 5 Port Gigabit Unmanaged Metal 

Desktop Switch (DGS-105) 

LTE Wireless Connection Device 1 

For remote monitoring of the system 

status, hard drive usage, and real-time 

system alert to the UNR team’s email 

box. 

Radio Communication for Remote 

RRFB Control 
1 

Tapco radio controller to remotely 

control the Tapco RRFB 

Temperature Data Logger 1 
For reading the enclosure inside 

temperature 

Electrical Enclosure 1 
29*24*12-inch, Type 3R Enclosure, 

Steel, Weather flow with Fan 

 

LiDAR system and automatic RRFB installation 

On June 19, 2019, two VLP-32c LiDAR sensors were installed at this site, one on the north traffic 
light pole and the other on the south pole.  An electrical enclosure (LiDAR cabinet) was installed 
on the south traffic pole to house the edge computation laptop, external hard drives for data log, a 
network switch, an LTE modem for wireless communication to the system, and a TAPCO radio 
transmitter allowing the edge computer to turn on RRFB flashing remotely. The sensors and 
cabinet were about 9 ft above the ground. Locations of LiDAR sensors and the LiDAR cabinet are 
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shown in Figure 9-3, and pictures of installed equipment are presented in Figure 9-4. The sample 
LiDAR cloud points from the two sensors are presented in Figure 9-5. Only LiDAR data collection 
was operated in the first few months, for data to calibrate automatic RRFB and lab test. 

 
Figure 9-3 Locations of LiDAR sensors and LiDAR processing cabinet at Green Valley 

Pkwy and Amargosa Trail 
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Figure 9-4 Pictures of the LiDAR sensors and the processing cabinet at Green Valley Pkwy 
and Amargosa Trail 

 
Figure 9-5 Sample LiDAR cloud points from the LiDAR sensors at Green Valley Pkwy and 

Amargosa Trail 

After the original system installation, it was found that the former RRFB radio signal receivers (at 
the RRFB poles) needed to be upgraded to receive the control signal from the LiDAR cabinet. 
Thus, new radio receivers were installed at the RRFB signals on July 1, 2019. The south LiDAR 
sensor was originally attached to the LiDAR device cabinet's bottom side, which caused significant 
occlusion and impacted the detection of southbound vehicle traffic. Therefore, the south LiDAR 
sensor was re-installed to the LiDAR cabinet top on August 26, 2019.  Trees between installed 
LiDAR sensors and the crosswalk occluded LiDAR detection of pedestrians at the median, so the 
Henderson traffic team removed the trees. All these installation improvements significantly 
enhanced the sensing quality of the LiDAR system and are valuable experiences for future roadside 
LiDAR installation. 

Communication, software, and maintenance 

Remote connection to the LiDAR sensing system was through LTE wireless. The 10G LTE 
monthly data allowed UNR staff’s daily system status check. The LTE connection allowed 
downloading new versions of LiDAR processing software to the edge computer and the software 
to send alert emails when system exception was detected. The UNR LiDAR logging software was 
installed on the edge computer. Another installed software package was for real-time crossing 
detection and automatic RRFB control. The detection and RRFB control software logged each 
crossing event and related the RRFB-triggering event. 
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The maintenance effort included a daily remote check of the system (started in February 2020) and 
replacement of external hard drives when they were full. During the Covid-19 virus pandemic 
lockdown, the Henderson traffic team exchanged hard drives and shipped them to UNR. 

Problems and solutions 

Windows 10 automatic system updates caused the edge computer restart and stopped the data 
logging software as at the other sites. Scheduled system updates are suggested for continuous 
maintenance and new deployment, especially in the early months of the deployment. The project 
team originally checked system status every week and sometimes found days of data missing 
because of the system restart. UNR allocated a dedicated staff to check the system status every day 
and added the system exception alert function to the software, which minimized data missing. 
Later in this project, the data compression function extended required hard drive exchange 
frequency to every three months. 

The cat-5e ethernet cable between the north LiDAR sensor to the LiDAR cabinet experienced an 
issue of data transmission package loss, so for a LiDAR data frame, part of cloud points could be 
missing. The issue was caused by the long connection distance and cable crosstalk. The distance 
between the two traffic poles is about 180-ft. When cable wiring went through the poles and 
underground conduits and kept extra lengths of cable on each side of the connection, the total cat-
5e cable length was about 250-ft. It did not reach the 300-ft limit of cat-5e but was long enough to 
be sensitive to crosstalk influence. The extra length of cable on each connection end was later cut 
off to shorten the total cable length, which solved the communication package loss issue.  

When logging two LiDAR sensors’ data to the same external hard drive, data transmission package 
loss also happened, which could be related to the hard drive’s continuous read and write speeds. 
Therefore, each sensor’s data was then logged to an individual hard drive. 

This project implemented the first LiDAR automatic RRFB at Green Valley Pkwy and Amargosa 
Trail. LiDAR sensors continuously scan the crosswalk environment, and the roadside sensing 
system automatically triggers RRFB flashing if any crossing event is detected. The LiDAR 
automatic RRFB in this project was designed as a safety backup system of the conventional RRFB. 
Physical RRFB buttons are available for crossing pedestrians/bicyclists to trigger RRFB flashing. 
If any pedestrian/bicyclist does not press the RRFB button, the LiDAR system automatically turns 
on RRFB before the pedestrian steps into vehicle lanes. This first LiDAR automatic RRFB was 
implemented to address the low percentage of pedestrians pressing RRFB buttons at this crosswalk. 
The project team conducted a field study at the crosswalk on 9/15/2019 5:00 am through 9/17/2019 
10:00 pm to identify percentages of pedestrians and bicycles not using the RRFB button. Among 
194 crossings, 35.56% of pedestrians and bicyclists did not press RRFB buttons before crossing, 
as listed in Table 9-2. Notably, more than half of the bicyclists did not use RRFB buttons before 
crossing. More bicycles (71.70%) did not use the button from west to east than pedestrians 
(28.30%). The reason could be that the west RRFB button location is not convenient for bike riders 
to reach. From east to west, percentages of bicycles (58.85%) and pedestrians (46.15%) who did 
not use the RRFB button were closer. 

For traffic engineers, a common consideration with RRFBs is the influence on vehicle traffic 
mobility, especially the reduced road capacity caused by unused RRFB flashing time. Most 
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pedestrians/bikes can cross a road in a shorter time than the predetermined RRFB flashing period. 
However, RRFB signals keep flashing until the configured flashing time (30 seconds for the 
Amargosa Trail crosswalk) is over. The flashing without pedestrians/bicyclists often confuses 
drivers and slows down traffic. The automatic RRFB implemented in this project can actively send 
out a "turn off" message for stopping RRFB flashing when crossings are completed and there are 
no other approaching pedestrians. However, the RRFBs at this crosswalk does not take any "turn 
off" control, so automatic "turn off" did not function at this crosswalk. It can be applied to other 
RRFBs or other pedestrian crossing signal systems if those systems take the "turn off" control.  

Table 9-2 RRFB Button Usage at the Crosswalk of Green Valley Pkwy and Amargosa Trail 

 
Pedestrian Crossings 
(percent in total 
crossing events) 

Bicycle Crossings 
(percent in total 
crossing events) 

Sum 

(percent in total 
crossing events) 

Pressing Button 79 (40.72%) 46 (23.71%) 125 (64.44%) 

Not Pressing Button 21 (10.82%) 48 (24.74%) 69 (35.56%) 

Total 100 (51.54%) 94 (48.45%) 194 

Data flow and control logic 

The roadside LiDAR sensing system detects, classifies, and tracks movement of each road user. It 
then determines whether an “on” message needs to be sent to RRFB for flashing based on 
pedestrians/bicyclists’ locations and movement directions. Figure 9-6 shows the system flow chart. 
The maximum sensing distance of VLP-32c LiDAR is a 200-meter radius, so the LiDAR system 
can detect jaywalks in an extended range (shorter than 200-meter radius for pedestrian detection). 
However, the system was configured to trigger RRFB flashing only when a crossing is at the 
crosswalk. This configuration avoids drivers being confused by the crosswalk RRFB flashing 
when jaywalking happens at an upstream or downstream location. Figure 9-7 demonstrated the 
defined zones where the roadside LiDAR system responds to crossing events for automatic RRFB 
flashing. The pedestrian crossing detection logic was developed based on the generated trajectories 
from LiDAR data. The direct and straightforward logic for crossing detection is determined by 
whether a pedestrian in the detection zone moves towards the other side of the road, based on 
LiDAR trajectory data. 
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Figure 9-6 Flow chart of LiDAR automatic RRFB control logic 

 

 
Figure 9-7 Configured crossing event zones for triggering RRFB flashing, on Google Aerial 

Map and LiDAR cloud points 

Performance evaluation - Lab evaluation 

Before operating the automatic RRFB at the crosswalk, the project team first evaluated the control 
logic performance in a UNR lab with logged LiDAR data and trajectories. The lab test simulated 
crossing events with historical LiDAR data and trajectories and then reviewed the control logic's 
responses. Accuracy of detection and RRFB control was evaluated by comparing the triggering 
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event to manually identified crossing events for the same historical data. Manual identification of 
crossing events was performed through the LiDAR data visualization software Veloview and 
conducted by two UNR staff for quality control. We utilized the data collected from 6/19/2019 
10:00 am to 7/2/2019 8:30 am for the lab evaluation. There were 845 crossing events in the 13-
day data. The following control exceptions were reviewed and logged: 

False turn-on – there was no crossing event, but the system sent "on" signal 

Missed turn-on – there was crossing events, but the system did not respond with "on" signal 

False turn-off – a crossing event was not completed, but the system sent "off" signal (it can be 
evaluated in the lab test with historical data, but the automatic "off" function was not implemented 
in the field implementation) 

Missed turn-off – a crossing event was completed and there were no other crossing requirements, 
but the system did not respond with "off" signal (it can be evaluated in the lab test with historical 
data, but the automatic "off" function was not implemented in the field implementation) 

Among the control exceptions, false turn-off is most dangerous because it turned off RRFB 
flashing when pedestrians/bikes are still on the road. The lab evaluation results are presented in 
Table 9-3 that shows no false turn-off and less than 1% for each of the other three exception types. 
Looking into those exceptional cases, they were all caused by special events, as described in "3.5 
Special events". The control logic correctly responded to all crossing events that used the 
crosswalk.  

Table 9-3. Off-line test based on four types of errors (845 crossing events) 

Error type False turn-on Missed turn-on False turn-off Missed turn-off 

Number of errors 
(percentage) 

5 

(0.59%) 

7 

(0.83%) 
0 

8 

(0.95%) 

Here are examples of special events causing exceptions. 

1) False turn-on example, Figure 9-8: a bicycle came from Amargosa Trail and showed a 
crossing intent but turned into the bicycle lanes in Zone 1. An “on” RRFB message was 
sent out as a false “turn on” case.  
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Figure 9-8 Illumination of a false turn-on event example 

2) Missed turn-on example, Figure 9-9: a pedestrian walked along the median and then crossed 
the median. The automatic control did not respond to this crossing event. 

 
Figure 9-9 Illumination of a missed turn-on event example 
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3) Missed turn-off example, Figure 9-10: a pedestrian crossing was not along the crosswalk. The 
automatic RRFB control did not detect a completed crossing event at the other end of the 
crosswalk, so it did not send an “off” RRFB message. 

 
Figure 9-10 Illumination of a missed turn-off event example 

 

 

 Field test 

After the lab evaluation proved the control logic performance and further system calibration based 
on the lab evaluation results, the LiDAR automatic RRFB was implemented at the crosswalk and 
turned on with UNR staff at the site to monitor the system operation and conduct field performance 
evaluation. Crossing events and RRFB flashing signals were recorded with a video camera three 
days from early morning to late night. Device locations are shown in Figure 9-11.  The field 
evaluation validated whether all crossing events through the crosswalk were successfully detected, 
whether automatic RRFB responded to each crossing, and whether there was any false RRFB 
flashing when there was no actual crossing pedestrians or bikes. 

The field test was performed from 9/15/2019 5:00 am to 9/17/2019 10:00 pm. With 194 crossing 
events during the field test, the system had only one missed turn-on exception: a bicyclist in a 
northbound vehicle lane crossed the median rather than from any end of the crosswalk. The system 
provided 99.5% control accuracy for responding to crossing events. After the field validation, the 
LiDAR automatic RRFB has been operating since February 18, 2020.  
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Figure 9-11 System layout during the field test 

The implemented automatic RRFB control did not use prediction algorithms to control RRFB, 
although the UNR team developed and published several pedestrian trajectory prediction 
algorithms in journal papers [7]. Even the best of today's trajectory prediction algorithms could 
still cause multiple false turn-ons every day at this site, which could confuse drivers and may cause 
drivers to gradually ignore the RRFB warning signal. The LiDAR automatic RRFB system at this 
crosswalk, as a back-up of the physical RRFB buttons, turn on the flashing signal only when 
pedestrians/bikes entered the roadway area (curb to curb including vehicle lanes, bike lanes and 
shoulders). Among all crossings without pressing the button, RRFB automatically flashed when 
pedestrians or bicyclists entered roadway 3.5 ft from the curb based on the field evaluation, as 
shown in Figure 9-12. 
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Figure 9-12 Locations where RRFB automatically start flashing if buttons are not used 

Crossing event log 

During the 24/7 running of the automatic RRFB system, crossing events were logged to include 
time, crossing location, and triggering events. Each crossing event may include multiple 
pedestrians or bikes in a group. Figure 9-13 presents daily crossing events from 2/10/2020 to 
5/3/2020, which are also frequencies of RRFB activation - manual and automatic. Due to system 
maintenance, the automatic RRFB system stopped on a few days. On average, the number of daily 
crossings at this crosswalk is about 133. An important note is that after the Nevada Governor Steve 
Sisolak ordered the closure of non-essential businesses in the state on March 17, 2020, there were 
more crossing events at the crosswalk. 

 
Figure 9-13 Daily distribution of crossing events at Green Valley Pkwy and Amargosa 
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10. ROUNDABOUT CAPACITY CALIBRATION WITH LIDAR DATA 
There have been many proposed methods for computing capacity at roundabouts either by 
regression models or analytic models, but the industry of traffic engineering utilizes the Highway 
Capacity Manual (HCM) as a guide to measuring capacity and other performance measures such 
as level of service (LOS), delay, queue, and volume-to-capacity ratio. For roundabouts, HCM 
employs a combination of regression and analytic models to derive a relationship between 
conflicting traffic flow and capacity of entry flow. For roundabouts, the conflicting traffic flow is 
the circulating flow, and the capacity of the entry is at the entry lanes of the roundabout leg. The 
entry capacity decreases as the conflicting circular flow increases. The analytic model that the 
HCM employs is based on the gap acceptance theory.  

Gap acceptance theory has been a useful model to explain the two-way stopped controlled 
intersections where a minor stream vehicle needs to decide which gap or headway is large enough 
to enter into the major stream traffic. For the case of roundabouts, the minor stream refers to the 
entry lane(s) which is yield controlled, and the major stream refers to the circulatory lane(s). The 
minor stream driver is referred to as the decision vehicle. The headway with which the decision 
driver is willing to ‘accept’ and enter the major stream flow is a function of many factors such as 
the driver’s experience, environmental factors, geometric design, speed, traffic volume, and more. 
The tendency for the decision driver to either reject or accept a headway is captured by measuring 
the critical headway. The critical headway is the minimum time headway between two successive 
major stream vehicles for which the minor stream decision vehicle can make a maneuver to enter 
the major stream (2). Critical headway is one of the gap acceptance parameters used. The second 
gap acceptance parameter is follow-up headway, which is the time headway between the departure 
of one minor stream vehicle and the departure of the subsequent minor stream vehicle into the 
major stream utilizing the same gap under the condition of continuous queueing (2). The HCM 
determines these gap acceptance parameters based on field data across the United States to derive 
a capacity equation that is a function of the conflicting flow.  

Critical headway cannot be measured directly because each driver is different, so the individual 
critical headway will vary from driver to driver. Further analysis of rejected headway and accepted 
headway from field data must be conducted. A rejected headway is the major stream headway 
between two successive vehicles for which a minor stream decision vehicle decides not to enter 
the major steam. Conversely, an accepted headway is a major stream headway between two 
successive vehicles for which a minor stream decision vehicle decides to enter the major stream. 
Therefore, many data points of rejected and accepted headways need to be collected, and further 
analysis is conducted to extract the critical headway. Many methods have been developed to 
determine the critical headway such as Raff’s Method, Maximum Likelihood Method, Probability 
Equilibrium Method, Median Method, and many more. The Raff’s Method and Maximum 
Likelihood Method are the two most common in the literature. In this study, Raff’s Method is 
employed due to its’ ease of computation. The second gap acceptance parameter is the follow-up 
headway, which is calculated by taking the average of the field measured follow-up headways.  

Once the two gap acceptance parameters are determined, they can be used to calibrate the HCM 
2016 capacity equation. As a result of observed variability between states and cities in gap 
acceptance parameter results, HCM has provided a method for calibrating the capacity equation 
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for more accurate measurement of capacity at certain states, cities, and even specific roundabouts 
and roundabout legs. For example, Nevada has their own capacity equation developed by 
Ahiamadi et al (2). 

Many research or government studies of gap acceptance are performed mainly by video data and 
extraction of data manually or through software. Some of the challenges of these studies are the 
use of multiple cameras to capture the areas of interest, typically two. The benefits that LiDAR 
has over video is that LiDAR is much less computationally demanding, its’ 360-degree detection 
range makes it easier to outfit at an intersection as opposed to placing several cameras, and LiDAR 
is not limited by lighting condition. Because of this, LiDAR can sense a wider detection range for 
greater periods and is not limited to the vehicle’s immediate surrounding environment as video 
sensors may be (3). Where video sensing provides high-resolution imaging, LiDAR provides high 
accuracy cloud points that can be used to track trajectories of all road-users such as volume, 
location, speed, direction, headways, and even road user size (3).  

The purpose of this study is to propose an automatic method to extract headway information from 
roadside LiDAR trajectory data which is processed through Python Scripts and ArcGIS software. 
From this trajectory data, the speed and timestamps are used to determine the critical headway for 
stopped vehicles and entry capacity at roundabouts. Previous studies have yet to develop such 
automatic methods for headway extraction and analysis. Many use the method of manual 
extraction via video, or software to assist in generating the desired headway information. Further, 
headway data extracted from high-resolution traffic trajectory data has not been done using LiDAR 
or other sensing devices. The implication of such a methodology are that headway analysis can be 
completed automatically upon completion of data collection which allows for faster turnover times 
for analysis. Further, using the high-resolution traffic trajectories, altogether more detailed analysis 
at the behavior-level of the road user can be provided to gain greater insight into the operational 
and safety performances on the road. 

Roadside LiDAR Trajectory Headway Extraction 

With the georeferenced trajectory of all road users obtained in the data preprocessing stage, the 
volume, speed, and headways can be automatically extracted for specified detection zones for 
further analysis. First, each 30-minute geolocated trajectory data is converted to GIS feature 
classes. Then in ArcGIS, the detection zones are drawn for the entry lanes and conflicting 
circulatory lanes using the draw command and converting the drawings into feature classes; a 
schematic is shown in Figure 10-1. The points shown in Figure 10-1 illustrate the trajectory of the 
road user, in this case vehicles, every 0.1-seconds. Next, an ArcGIS plugin of python scripts 
created by the authors is run to determine the volume, direction, size, and speed of each road user 
within each detection zone. From the output obtained by the python script, the desired input for 
headway extraction are outlined in Figure 10-1 and detailed as follows: 

• Conflict Zone: The area for which the vehicle trajectories cross or come into conflict. 
• Entry Vehicle Stop (Estop): Timestamp for which the entry vehicle begins stopping. 
• Entry Vehicle Enters (Eenter): Timestamp for which the entry vehicle accepts the headway 

and enters the roundabout. 
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• Entry Average Speed (𝑉𝑉𝑡𝑡𝑎𝑎𝑎𝑎 ): Average speed of entry vehicle trajectory points in the 
detection zone. 

• Circle Vehicle Enters Conflict Zone (𝑋𝑋𝑐𝑐𝑐𝑐𝑡𝑡𝑓𝑓𝑐𝑐𝑖𝑖𝑐𝑐𝑡𝑡): Timestamp for which the circulating 
vehicle arrives at the conflict zone. 

 
 

 
Figure 10-1 Vehicle Trajectories and ArcGIS Detection Zones 

The data inputs outlined in Figure 10-1 are used to determine the following: 

• Rejected lag: the time difference between an entry vehicle arriving at the yield line and a 
circulating vehicle arriving at the conflict zone for which the entry vehicles rejects. 

• Accepted lag: the time difference between an entry vehicle arriving at the yield line and a 
circulating vehicle arriving at the conflict zone for which the entry vehicles accepts (does 
enter). 

• Rejected Headway: the time difference between two following vehicles measured from the 
front bumper of the leading vehicle to the front bumper of the following vehicle for which 
a corresponding entry vehicle rejects. 

• Accepted Headway: the time difference between two following vehicles measured from 
the front bumper of the leading vehicle to the front bumper of the following vehicle for 
which a corresponding entry vehicle accepts. 

• Follow-up Headway: The time headway between queued entry vehicles utilizing the same 
headway in the conflicting circulatory flow. 

For a rejected lag, the time difference between when an entry vehicle comes to a stop and the next 
circulatory vehicle enters the conflict zone is recored as the rejected lag if the entry vehicle does 
not enter the roundabout before the cirulatory vehicle enter the conflict zone. While this value is 
not used in this study, it may be used for further analysis in subsequent studies. Furthermore, it is 
essential to differentiate between rejected lags and rejected headways because the rejected 
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headways are major stream headways that are observed by the minor stream decision vehicle 
whereas rejected lags are not.  

For a rejected headway, when an entry vehicle remains in the detection zones while two or more 
vehicles in the circulatory lane pass the conflict zone, the corresponding circulatory headways are 
extracted and set a rejected headways. Alternatively, when the timestamp for which the entry 
vehicle enters is in between two circulatory conflict entry timestamps, the entry vehicle entered 
the circulatory stream and the corresponding circulatory headway is recorded as an accepted 
headway. 

The follow-up headway is determined by measuring the headway of queued entry vehicles that 
enters the same circulating headway when the leading vehicle comes to a stop. Once the maximum 
frame index for the entering vehicle is recorded, the headway of the following queued vehicles is 
recorded. The maximum threshold defined is 5-seconds to ensure that only vehicles in the queue 
are recorded. Similar to the average speed threshold, this threshold value was visually inspected 
checking the Veloview cloud points for validation. The measurement is stopped once a new 
circulatory vehicle enters the conflict zone or the entry headway exceeds 5-seconds. 

HCM 2016 Capacity Equation Calibration 

The method for calibrating the HCM 2016 capacity equations is outlined. Equations (2) – (4) 
outline the HCM calibration equations based on the inputs of critical headway, follow-up headway, 
and conflicting flow. 

 

𝑋𝑋 = 𝐴𝐴𝑃𝑃(−𝐵𝐵𝑎𝑎𝑐𝑐)          
 (Equation 10-2) 

 

𝐴𝐴 = 3600
𝑡𝑡𝑓𝑓

          

 (Equation 10-3) 

 

𝐵𝐵 =
𝑡𝑡𝑐𝑐−(

𝑡𝑡𝑓𝑓
2 )

3,600
          

 (Equation 10-4) 

 

Where; 

𝑋𝑋 = 𝑙𝑙𝐴𝐴𝑅𝑅𝑃𝑃 𝑅𝑅𝐴𝐴𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑐𝑐,𝑐𝑐𝐴𝐴𝑅𝑅𝑅𝑅𝑃𝑃𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝐴𝐴𝑃𝑃𝑅𝑅 (𝑐𝑐𝑅𝑅)/ℎ𝑃𝑃 

𝑣𝑣𝑐𝑐 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑙𝑙𝑅𝑅𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝑃𝑃 𝑐𝑐𝑙𝑙𝑅𝑅𝑤𝑤,𝑐𝑐𝑅𝑅/ℎ𝑃𝑃 

𝐴𝐴𝑐𝑐 = 𝑅𝑅𝑃𝑃𝑅𝑅𝐴𝐴𝑅𝑅𝑅𝑅𝐴𝐴𝑙𝑙 ℎ𝑃𝑃𝐴𝐴𝑑𝑑𝑤𝑤𝐴𝐴𝑐𝑐, 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅 
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𝐴𝐴𝑓𝑓 = 𝑐𝑐𝑅𝑅𝑙𝑙𝑙𝑙𝑅𝑅𝑤𝑤 − 𝑢𝑢𝑐𝑐 𝐻𝐻𝑃𝑃𝐴𝐴𝑑𝑑𝑤𝑤𝐴𝐴𝑐𝑐, 𝑅𝑅𝑃𝑃𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅 

 

Evaluation with field Collected Data 

The evaluation of the proposed method is outlined. First, the case study summarizes the site and 
data collection details. Then, the results and analysis go over the output from the method proposed 
such as rejected headway, accepted headway, critical headway, follow-up headway, and the 
capacity equation. 

The case study for his report will be outlined. The study was conducted in Reno, Nevada, United 
States. The study roundabout is located in the South Reno residential area at the intersection of 
State Route (SR) 341 and Veterans Pkwy. Figure 10-2 on the left shows the roundabout and 
indicates the LiDAR sensor location, and Figure 10-2 on the right illustrates the georeferenced 
LiDAR trajectory results. For this study, only the south leg is considered. The south leg consists 
of two entry lanes that are yield controlled with the left – or inner – lane being a designated left-
turn lane and the right – or outer – lane being a designated left-through-right lane. There is one 
corresponding conflicting – or circulatory – lane that is a designated through-left lane. Each entry 
lane will be considered separately for this study, with critical headway, follow-up headway, and 
capacity equations being determined for each. The vehicle trajectory data was collected at this 
roundabout using a single LiDAR sensor. LiDAR data collection took place on Sunday, June 7th, 
2020 from 9:30 AM – 9:00 PM with 4:30 PM – 5:00 PM and 6:00 PM – 6:30 PM being omitted 
because of rain causing error in the headway extraction results. The traffic at this intersection is 
homogeneous and there were only 11 pedestrians for the full day on the south leg crosswalk. 
Therefore, heavy vehicle traffic and pedestrian factors are not considered. 

 

 
Figure 10-2 (left) Study Roundabout and LiDAR Locations and (right) Georeferenced 

LiDAR trajectory Results 

 

LiDAR Location 
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Figure 10-3 illustrates sample trajectories and their corresponding detection zones. For the entry 
trajectories the detection zone tracks the first and last point within the detection zones, which is 
tracking the front left car of the vehicle. For the circle trajectory, the detection zone tracks the last 
point within the detection zones, which is the rear corner closest to the detection zone. The corner 
that is being tracked is consistent throughout each vehicle trajectory, which means the true 
headways are being measured. 

 

 

 
Figure 10-3 Case Study Sample Trajectories and Detection Zones 

 

Results and Analysis 

The results and analysis of the data extraction are outlined. The rejected, accepted, and follow-up 
headways were recorded for the full data collection period. Table 10-1 and  
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Table 10-2 Comparison of the Total Number of Headways from Code and Actual for the Outer 
Lane shows the number of headways extracted versus the actual number for the inner lane and 
outer lane, respectively. With higher traffic volumes determined for the outer entry lane, it is 
expected to see a greater number of headways for the outer lane. The reason for the difference 
between the code output and the actual is due to various errors outlined as such: 

• Follow-up headways recorded that were outside the queue 
• Vehicles that were in the queue and accepted the same headway that was not recorded 
• Entry vehicles stopping before reaching the detection zone 
• A trailer being counted as a vehicle 
• Occlusion of a vehicle by another larger vehicle 
• The vehicle made a stop, but was not recorded 
• The vehicle did not make a full stop, but was recorded 
• Change in 30-minute spreadsheet file 
• Priority reversal  

 

Table 10-1 Comparison of the Total Number of Headways from Code and Actual for the 
Inner Lane 

Headway Type 
Number of Headways  

Percent Difference 
Code Actual 

Rejected Headways 267 282 5% 

Accepted Headways 43 46 7% 

Follow-up Headways 43 45 5% 

 

Table 10-2 Comparison of the Total Number of Headways from Code and Actual for the 
Outer Lane 

Headway Type 
Number of Headways Extracted 

Percent Difference 
Code Actual 

Rejected Headways 606 619 2% 

Accepted Headways 123 122 1% 

Follow-up Headways 251 236 6% 

 

Gap Acceptance Parameters 



Proof-of-Concept Research of Roadside LiDAR Sensing Multimodal Traffic 

104 

 

The results for the gap acceptance parameters for each entry lane are outlined. The first gap 
acceptance parameter is the critical headway. There have been many proposed methods for 
determining this value. The method that this study is using is Raff’s Method because of its ease of 
computation for this case study. Figure 10-4 and Figure 10-5 illustrate Raff’s Method plots for the 
inner lane and outer lane, respectively. The follow-up headway is determined by taking the average 
of all the follow-up headways. The critical headways and follow-up headways for both the inner 
and outer lanes are tabulated in Table 10-3. The acceptable range of accepted headways used was 
3 – 10 seconds as 10 seconds adequately captures real headways that are observed by the driver. 
Longer headways were not considered because they could not be reasonably observed by the driver. 
The lower thresholds ensure that no errors show up. It was observed that accepted headways lower 
than 3 seconds is due to detection zone issues of vehicles not following the usual travel lane path. 

 

Figure 10-4 Raff’s Method Cumulative Distribution Plot for the Inner Lane 
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Figure 10-5 Raff’s Method Cumulative Distribution Plot for the Outer Lane 
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Table 10-3 Critical Headway and Follow-up Headway 

Headway Inner Lane (sec) Outer Lane (sec) Percent Difference 

Critical Headways (sec) 4.7 4.0 16% 

Follow-up Headways (sec) 2.7 2.6 4% 

 

HCM Calibration 

The HCM calibration is conducted for both entry lanes based on the gap parameter results and is 
compared to the HCM 2016 and Nevada calibrations. Equation 5 is the capacity equation for the 
HCM 2016, Equation 6 is the capacity equation derived for the State of Nevada, Equation 7 is the 
capacity equation for the study inner lane, and Equation 8 is the capacity equation for the study 
outer lane.  

 

𝑋𝑋 = 1,420𝑃𝑃(−0.91×10−3)𝑎𝑎𝑐𝑐         (5) 

𝑋𝑋 = 1,230𝑃𝑃(−0.67×10−3)𝑎𝑎𝑐𝑐         (6) 

𝑋𝑋 = 1,333𝑃𝑃(−0.93×10−3)𝑎𝑎𝑐𝑐         (7) 
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𝑋𝑋 = 1,385𝑃𝑃(−0.74×10−3)𝑎𝑎𝑐𝑐         (8) 

Figure 10-6 graphically represent the difference between each capacity equation. The capacity is 
plotted for a variety of conflicting vehicle volumes ranging from 0 to 2500 vehicle per hour, with 
corresponding capacities ranging from 1400 vehicle per hour down to below 200 vehicles per hour. 
In comparing each of the curves. The study inner and outer lane capacity results are consistent 
with the capacities from the HCM 2016 and Nevada capacity results. The outer lane capacity is 
consistently larger than the inner lane capacity. Furthermore, the outer lane capacity has the highest 
capacity for most of the conflicting vehicle volume range; whereas, the inner lane capacity has the 
lowest capacity for most of the conflicting vehicle volume range. 

 

Figure 10-6 Capacity Equation Curves from the Study, HCM, and Nevada Calibrations 
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11. AUTOMATIC VEHICLE-PEDESTRIAN YIELD RATE ANALYSIS WITH LIDAR 
In the case uncontrolled crosswalks, pedestrian-vehicle interactions (PVIs) can be defined by when 
a pedestrian has to slow down or stop at the curb because a vehicle is approaching, or when a 
vehicle decelerates, stops, or accelerated because of a pedestrian’s intent to cross or during crossing. 
Two behaviors can be studied in such events, the behavior of the pedestrian, and the behavior of 
the vehicle. The most common measure of pedestrian behavior at uncontrolled crosswalks is gap 
time (Amado et al. 2020). In this context, the gap time is the vehicle time headway that a pedestrian 
is willing to cross within. In other words, gap time i s a measure of the assertiveness and comfort 
level of the pedestrian when navigating the crosswalk; however, it can also be used to measure the 
risk to the pedestrian. Gap acceptance theory is a common method to measure gap time, which 
looks at both gaps that pedestrians accept and reject and derives a critical gap for which most of 
the pedestrians are willing to accept. 

Trajectory data extracted from sensors such as LiDAR and camera has birthed a new research area 
for SSM since it can track road users through time and space at a high frequency. Trajectory data 
can be used to measure SSM such as time to collision (TTC), post-encroachment time (PET), and 
deceleration rate to avoid collision (DRAC). TTC is the time to collision when two road users 
continue their trajectory at the same angle and speed without any kind of evasive behavior (Kizawi 
and Borsos, 2021). PET is the difference between times when one road user enters a conflict point 
until another road user arrives to the same conflict point (Kizawi and Borsos, 2021). The lower 
TTC and PET is, the closer to a collision the two road users were (Kizawi and Borsos, 2021). 
DRAC is a measure of the vehicle’s own movement which is hard deceleration rates that the 
vehicle must perform to avoid a collision (Jiang et al. 2021). 

However, this study focuses on the behavior of the vehicle at uncontrolled crosswalks which is 
commonly measured in yield rate. The yield rate is defined as the proportion of vehicles that yield 
to pedestrians over all PVIs (Fu et al. 2018). This can be more accurately measured in yield 
compliance, which is the proportion of vehicles that yield to pedestrians over the vehicles that are 
physically able to yield to crossing pedestrians (Fu et al. 2018). Yield compliance essentially 
considers the stopping sight distance (SSD) of the vehicle, which is the perception, reaction, and 
braking distance most drivers are expected to stop within for a given speed. In the current literature, 
yield rates from PVIs are commonly extracted manually in the field or through video for the 
purposes of modeling and microsimulations. Therefore, high accuracy movement (trajectory) data 
is not considered, which captures behavior-level information at high granularity. Furthermore, 
there are no previous methods for automating such yield analyses leading to extensive labor hours 
for data extraction.  

The purpose of this study is to propose an automatic method for extracting PVIs and determining 
yield rate and compliance from roadside LiDAR trajectory data. From this trajectory data, the 
speed and timestamps are used to determine the crossing conflicts and yield or no yield events. 
Previous studies have yet to develop such automatic methods, especially from high-resolution 
traffic trajectory data. The implication of such a methodology is that yield analysis can be 
completed automatically upon completion of data collection which allows for faster turnover times 
for analysis and countermeasure selection. Further, using the high-resolution traffic trajectories, 
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altogether more detailed analysis at the behavior level of the road user can be provided to gain 
greater insight on the operational and safety performances at the uncontrolled crosswalk. 

Yield rate is a measure of analyzing PVIs at uncontrolled pedestrian crossings, particularly driver 
behavior. Yielding is a critical component to measuring accessibility of and safety for pedestrians 
and striving to improve such measures will make streets more equitable. Most studies collect the 
yield data through field observations, video recordings and manual extraction, or a combination of 
the two (Sun et al., Ottomanelli et al., Chen et al., Lu et al., Feliciani et al.). In addition to video 
recordings, Schroeder et al. used a laser speed gun to collect vehicle speeds and used the data to 
determine when PVIs occurred. Some studies use driver simulations to measure VPIs for a variety 
of pedestrian crossing scenarios. The major limitations to field data collection methods are that it 
can limit the data collection time periods to day time periods. Most studies collected data during 
peak hours (Sun et al., Chen et al., Lu et al., Schroeder et al.). Ottomanelli et al. sought to collect 
data during non-peak hours to model regular conditions. Fitzpatrick and Park collected 48 hours 
of video recordings during daytime and nighttime periods to compare the difference in yield rates 
for crosswalks equipped with flashing pedestrian signals. However, to reduce the amount of 
manual extraction, staged pedestrians were used. A staged pedestrians is a volunteer who acts as a 
pedestrian and crosses at crosswalks to simulate real world PVIs. Most other studies used real PVIs 
without the use of staged pedestrians. 

Cameras are most commonly used to generate trajectory data; however, the use of LiDAR sensors 
have become increasingly more common. Both sensors deal with the same issues of detecting, 
tracking, and classifying road users while also combating issues of occlusion of road users by 
vehicle, buildings, and other objects. Much of the applications surrounding roadside trajectory data 
is in behavioral analyses and surrogate safety measures (SSM) given the high frequency of road 
user detection. Fu et al. used vision-based trajectories from two cameras to extract PVIs and yield 
rates/compliance. Fu et al. used similar methods to investigate secondary PVIs at unsignalized 
intersection (Fu et al. 2019). Secondary PVIs are interactions between vehicles exiting the 
intersection and conflicting with crossing pedestrians, which are shown in the study to be more 
severe (Fu et al. 2019). Muppa et al. also analyzed PVIs at unsignalized interactions with vision-
based trajectories, but used the surrogate safety measure of TTC to see if there is a difference in 
value when the vehicle passes first and when the pedestrian passes first. Golakiyaa et al. measured 
PVI at uncontrolled mid-block crosswalks using the SSM of time difference to collision (TDTC) 
in an attempt to classify levels of aggressive behavior exhibited by vehicles and pedestrians.  

Trajectory-based PVI analyses have also been performed using LiDAR-based trajectories. Lv et 
al. proposed an automated method for identifying pedestrian vehicle conflict events using speed-
distance profiles (SDP) to break up the conflicts into different risk levels. Wu et al. also used road 
user trajectories extracted from LiDAR sensors to calculate a variety of SSM such as post 
encroachment time (PET), the proportion of the stopping distance (PSD), and crash potential index 
(CPI). These SSMs have also been applied to vehicle-to-vehicle interactions. Xie et al. utilized 
vision-based trajectories to identify rear-end conflicts at two intersections with 70-hours of total 
video recordings. Jiang et al. also studied vehicle-to-vehicle conflicts from vision-based 
trajectories to measure SSM such as PET, TTC, and DRAC for rear-end, lane changes, and fixed 
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object conflicts on highways. Other interaction analyses can be done between vehicles and 
bicyclists, E-Bikes, and even wild animals.  

Roadside LiDAR Trajectory Yield Input Data 

With the georeferenced trajectory of all road users obtained in the data preprocessing stage, the 
desired yield parameters, such as vehicle speed and time to enter crosswalk, can be extracted for 
each trajectory in each specified detection zones. First, the geolocated trajectory data is converted 
to GIS feature classes every 30 minutes. Then in ArcGIS, the detection zones are drawn for the 
trajectory conflict points of interest, a schematic is shown in Figure 10-1. Next, an ArcGIS plugin 
of python scripts created by the authors is run to extract each pedestrian crossing event and each 
important yield parameters corresponding to the PVI. These parameters include time stamp for 
which the vehicle and pedestrian enters the crosswalk and corresponnding vehicle speeds.  

 

Figure 11-1 Vehicle and Pedestrian Trajectories and Detection Zones 
 

Conflict Zones 

Detection Zones 

Ped Approaches 

Ped Enters 

Vehicle Approaches 

Vehicle Enters 

Once the PVIs at the uncontrolled crosswalk are extracted through the Python Script, it is important 
to extract the yield information to know whether the vehicles yielded for pedestrians. Originally, 
the method was to measure the last trajectory point to leave the specifeied detection zone, which 
is the time stamp just before the vehicle or pedestrian enters the crosswalk. If the vehicle entered 
the croswalk before the pedestrian, then that was marked as a no yield case. If the pedestrian 
entered the crosswalk before the vehicle, then that was marked as a yield case. This timestamp 
between vehicles and pedestrians entering a crosswalk is also measured in the time difference to 
conflict (TDTC), which is the timestamp difference between the vehicle entering the crosswalk 
and the pedestrian entering the crosswalk. A positive value are yield cases while negative values 
are no yield cases. 
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However, there are several other considerations to be made to increase accuracy. First, only those 
crossing intances for which vehicles and pedestrians interact should be used. Next, the vehicle 
speed must be considered, which is important for ensuring vehicle actually yielded to pedestrians. 
Lastly, this method does not consider the stopping sight distance for which a driver needs to 
preceive, react, and brake for a pedestrian crossing. Therefore, the data needs to be filtered to only 
include interactions between vehicles and pedestrians, and to only include vehicles that are 
physically able to yield. Once this is performed, every real vehicle-pedestrian yield interaction is 
collected with the following yield paramters: 

1. Time difference to conflict (TDTC) 
2. Vehicle speed 

 

Threshold-Based Method for Extracting Vehicle-Pedestrian Yield Data 

The first proposed methodology is to extrtact the yeild cases using theshold values. The first 
threshold value is the vehicle-pedestrian interaction threshold, which is defined by the crossing 
time for pedestrian through the crosswalk. If the TDTC is less than the pedestrian crossing time, 
this is considered an intereaction. Otherwise, the data is filtered out as a non-interaction case. Next, 
is the vehicle speed threshold. This is perhaps not as intuitive to gather because it varies based on 
the site. Also, it is not clear whether it is important to only consider full stops, or also floating 
vehicles. In this study, both are considered, which means a higher vehicle speed threshold value is 
used. The vehicle speed threshold value can be gleaned by looking at the raw LiDAR data, or by 
looking at the PVIs through a speed vs. TDTC plot. When there is sufficient data, the speed vs. 
TDTC plot shows clusters of data that could help identify possible speed thresholds. The final 
threshold has to do with stopping sight distance (SSD). In other words, it is important to exclude 
cases for which vehicles are unable to yeild for pedestrians. This is performed by calculating the 
SSD and converting it to stopping sight time. Then, this value is compared to the time difference 
between the “vehicle enters” and “ped approaches. If the time difference is less than the stopping 
sight time, then the vehicle was able to yield, otherwise, the vehicle could not yield. Figure 11-2 
is a flow chart illustrating the thershold-based method for extracting vehicle-pedestrian yield data. 
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Figure 11-2 Threshold-Based Method for Extracting Vehicle-Pedestrian Yield Data 
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Statistical Method for Extracting Vehicle-Pedestrian Yield Data 

The statistical method used for the yield extraction is discussed. This method seeks to fill gaps in 
understanding the variables that go into determining yield cases. Since such variables are 
continuous and PVI behaviors vary, it is perhaps more insightful to look into probabilities of yield 
cases to better understand these behaviors. First, the PVI data is filtered to only include true 
interactions and consider the SSD. With the data filtered, a statistical model is derived to extract 
vehicle-pedestrian yield data. The statistical method used in this paper is a logistic regression 
because the response variable is binary – yield versus no yield. The main covariates that are tested 
include the vehicle’s speed and the TDTC. The general form of a logistic regression is written as 
such: 

 

Linear model:   𝑐𝑐 = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥        (1) 

 

Logistic model:  𝑐𝑐 = 1
1−𝑏𝑏−(𝑏𝑏0+𝑏𝑏1𝑥𝑥)

𝑦𝑦𝑖𝑖𝑏𝑏𝑐𝑐𝑦𝑦𝑐𝑐
���� log � 𝑝𝑝

1−𝑝𝑝
� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥    (2) 

 

Where 𝑐𝑐 = Response, 𝑏𝑏0 = y-intercept, 𝑏𝑏1 = Slope, and 𝑐𝑐 = Probability of response 

 

The first step is to generate real yield and no yield cases from the filtered PVI data. This is 
performed by going through each data point (interaction) and verifying whether it is a yield or no 
yield case by looking at the raw cloud point data. Once a sizeable sample has been manually 
compiled, the new dataset can be used to calibrate the model. Six models were tested in this paper,  
consisting combinaitons are covariates vehicle speed, TDTC, and the binary of who entered the 
crosswalk first. For the best models, the logistic regression “S” curve is generated to see the 
continuous probability of yield or no yield 

CASE STUDY 

The evaluation of the threshold-based method and statistical method for extracting vehicle-
pedestrian yield data is detailed. First, the case study summarizes the site details and data collection 
date and time. Then, the threshold-based method case study results are outlined. Finally, the 
statistical method is detailed. 

The case study for his report will be outlined. The study was conducted in Henderson, Nevada, 
United States at an uncontrolled mid-block crosswalk at Green Valley Pkwy and Amargosa Trail. 
The crossing is equipped with a rectangular rapid flashing beacon (RRFB) activated by a push-
button pressed by the pedestrians to alert drivers of their intent to cross. Figure 10-2 on shows the 
mid-block crosswalk and indicates the LiDAR sensor location. For this study, only the westbound 
pedestrian crossings and corresponding northbound vehicle movements are considered. There are 
two northbound lanes which are analyzed together. The all-road users cloud point data was 
collected at this crosswalk using a LiDAR sensor for the purposes of generating the trajectories of 
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all road users. LiDAR data collection took place from 6/23/2019 8:00 AM to 6/29/2019 11:00 PM. 
The vehicle traffic at this intersection is mostly passenger vehicles and the crosswalk is used by 
pedestrians and bicyclists. 

 

Figure 11-3 Study Mid-Block Crosswalk and LiDAR Location 
 

LiDAR Location 

N 

 

Results and Analysis 

The results and analysis of the yield data extraction are outlined. The PVI and corresponding 
vehicle speeds and timestamps are extracted for the full data collection period. There was a total 
of 866 PVIs recorded, which is also the same as the total number of pedestrians/bicycles crossing 
westbound.  

Threshold-Based Method for Extracting Vehicle-Pedestrian Yield Data 

The results for the threshold-based method is outlined. For this method, three threshold values 
need to be determined as follows: 

• PVIs 
• Vehicle speed 
• Stopping sight distance 

To help understand these thresholds, we will take a look at the speed vs TDTC plot shown in 
Figure 10-4. To help understand how to read the speed-TDTC plot, it is good to break the data into 
quadrants as such: 

I. Non-interaction cases where the vehicles speeds are uninterrupted by the pedestrian  
high TDTC, high vehicle speed 

II. Non-interaction cases where the vehicles speeds are interrupted, hence there are fewer data 
points  high TDTC, low vehicle speed 

III. Interactions where the vehicles speeds are interrupted, hence making up a cluster of yield 
cases  low TDTC, low vehicle speed 
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IV. Interaction cases where the vehicle enters the crosswalk before the pedestrian and does not 
slow down, hance making a cluster of no yield cases  high TDTC, high vehicle speed 

 

Figure 11-4 Speed vs TDTC plot 
 

I II 

III IV 

 

For the PVI threshold, the crossing time is used, which is based on the crosswalk length and a 
pedestrian speed of 3 feet per second. The value for this site is 20 seconds, so any TDTC that is 
greater than 20 seconds is filtered out as a non-interaction case A total of 309 points are filtered 
out non-interaction cases, which makes up 36% of the original data. Next, the vehicle speed 
threshold is determined. Given the speed limit of Green Valley Pkwy is 35 miles per hour (MPH), 
the threshold must be lower than the speed limit, but still large enough to capture the cluster shown 
in Figure 10-4. Based on manual observations, a vehicle speed threshold of 20 MPH was chosen. 
Finally, the SSD is considered, which is based on each individual vehicle speed and compared to 
the “vehicle enters” and “ped approaches” difference. SSD filtering will take points away from 
quadrant IV, which is the no yield quadrant. A total of 133 points were removed from the stopping 
sight distance filtering, leaving a total of 412 points. Figure 10-5 shows the filtered data and 
designates the yeild points and no yeild points. As shown in Table 11-1, there was 190 yield cases 
and 222 no yield cases for a yield compliance of 46%.  
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Figure 11-5 Filtered Speed vs TDTC plot 

 

Table 11-1 Yield counts and yield compliance 

Yield Cases No Yield Cases Yield Compliance 

190 222 46% 

 

Statistical Method for Extracting Vehicle-Pedestrian Yield Data 

The process for determining the best logistic regression for the statistical method is discussed. The 
first step is to filter the non-interactions and based on the SSD, which leaves us with the same 412 
data points. Then, a sample of real yield and no yield data is manually extracted from the raw 
LiDAR cloud points. 35 yields and 43 no yield for a total of 78 data points were manually extracted 
for the purposes of testing logistic regression models. The following models with corresponding 
variables are tested: 

1. Vehicle speed 
2. TDTC 
3. Vehicle speed and TDTC 
4. TDTC and pedestrian enters crosswalk first binary applied to the slope and intercept 
5. Vehicle Speed and pedestrian enters crosswalk first binary applied to the slope and 

intercept 
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6. Vehicle Speed and TDTC with pedestrian enters crosswalk first binary applied to the slope 
and intercept 

 

Each of the logistic regression model equations are outlined in Table 11-2 along with the Akaike 
information criterion (AIC). AIC is a mathematical method for evaluating how well a model fits 
the data. The lower AIC is, the better the model fits to the data. AIC typically is used to compare 
models. In the case of the models and corresponding AIC outlined in Table 11-2, it appears that 
vehicle speed is the best parameter for determining yield cases since each model that has vehicle 
speed as one of its’ parameters has a lower AIC. Figure 11-6 and Figure 11-7 illustrate the logistic 
regression curve for Model 5 and 6, respectively. From the curves, it can be gleaned that there is 
very low uncertainty in the probability of vehicles yielding to pedestrians. Not only does this 
validate the yield data, but it also emphasizes the importance of vehicle speed in determining yield 
rates. 

Table 11-2 Logistic Regression Model Results 
 

ID 
 

Logistic Regression Models 
 

 

AIC 

 
1 

 

log �
𝑃𝑃

1 − 𝑃𝑃
� = 8.40275 − 0.36194𝑉𝑉 

 

 
25.443 

 
2 

 

log �
𝑃𝑃

1 − 𝑃𝑃
� = −1.049140 + 0.027741𝑇𝑇 

 

 
56.053 

 
3 

 

log �
𝑃𝑃

1 − 𝑃𝑃
� = 6.838362 + 0.007509𝑇𝑇 − 0.305876𝑉𝑉 

 

 
26.58 

 
4 

 

log �
𝑃𝑃

1 − 𝑃𝑃
� = −2.605406 − 0.006273𝑇𝑇 − 8.209077𝑑𝑑 + 0.182603𝑇𝑇𝑑𝑑 

 

 
42.567 

 
5 

 

log �
𝑃𝑃

1 − 𝑃𝑃
� = 4.210 − 20.96𝑉𝑉 + 45.84𝑑𝑑 − 20.62𝑉𝑉𝑑𝑑 

 

 
20.536 

 
6 

 

log �
𝑃𝑃

1 − 𝑃𝑃
� = 4.27011 − 0.25015𝑉𝑉 − 0.01886𝑇𝑇 − 6.85780𝑑𝑑 + 0.14556𝑇𝑇𝑑𝑑 

 

 
25.128 

* Where 𝑃𝑃 = 𝑐𝑐𝑃𝑃𝑅𝑅𝑏𝑏𝐴𝐴𝑏𝑏𝑅𝑅𝑙𝑙𝑅𝑅𝐴𝐴𝑐𝑐,𝑉𝑉 = 𝑣𝑣𝑃𝑃ℎ𝑅𝑅𝑅𝑅𝑙𝑙𝑃𝑃 𝑅𝑅𝑐𝑐𝑃𝑃𝑃𝑃𝑑𝑑,𝑇𝑇 = 𝑇𝑇𝐶𝐶𝑇𝑇𝑋𝑋,𝑑𝑑 = 𝑐𝑐𝑃𝑃𝑑𝑑 𝑃𝑃𝑅𝑅𝐴𝐴𝑃𝑃𝑃𝑃 𝑐𝑐𝑅𝑅𝑃𝑃𝑅𝑅𝐴𝐴 𝑏𝑏𝑅𝑅𝑅𝑅𝐴𝐴𝑃𝑃𝑐𝑐 
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Figure 11-6 Logistic Regression Curve for Model 5 

 

 

 

Figure 11-7 Logistic Regression Curve for Model 6 
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12. ANALYSIS OF WILDLIFE CROSSING EVENTS IMPACTING TRAFFIC WITH LIDAR 
Wildlife-vehicle crash (WVC) is a global issue. With the continuous increase of the number of 
WVCs in many countries in recent years [61], it has begun to receive more attention. WVCs do 
not just cause safety problems for wildlife and drivers but also cause serious economic losses. 
According to National Highway Traffic Safety Administration (NHTSA), in 2015, a total of 
278,000 WVCs were recorded. The loss caused by this kind of crash is about 8.4 billion per year 
[62].  

Several previous studies have been conducted about investigating the factors influencing the 
frequency and severity of WVCs. Hothorn [63] demonstrated that the WVCS tend to occur at night, 
at twilight, and in some specific parts of the year, which is related to animal life cycles. WVCs 
also tend to occur at some particular sections of the road than the other parts [64]. These road 
sections are named hot spots, which only account for a small part of the entire road network where 
WVCs may occur [65]. Improper geometric design may also cause the occurrence of WVCs due 
to insufficient sight distance [66].  

Although there have been a number of research on the factors that may affect or cause WVCs, 
most of them are studied based on past WVC records. Since the occurrence of WVCs is random 
and accidental, these records cannot fully explain the impact of WVCs and potential wildlife-
vehicle near-crashes on driving vehicles. When wildlife crosses the road, even if there is no crash, 
it will still affect the normal driving of vehicles, causing potential delay problems and energy 
consumption issues. New methods related to real-time wildlife crossing detection and analysis are 
urgently needed. Cameras are the commonly used technology to capture wildlife crossing [67] [68] 
[69] [70][71]. But it shows weak performance during poor-light conditions [72]. Thermal cameras 
can overcome this shortage by capturing objects based on the temperature, which shows good 
performance even in completely dark conditions [73]. According to Christiansen [74], thermal 
cameras show a wildlife detection accuracy of 93.5% in the range of 3-5 meters and 77% in the 
range of 10-20 meters. The thermal camera cannot successfully detect wildlife if the distance is 
greater than 20 meters. Besides, the thermal camera's lateral detection angle is limited. There are 
also some studies using high-frequency radio-tracking (VHF) and GPS-based-tracking 
technologies [75] [76], which can track the wildlife accurately, and there is no limit for detection 
range, but it is only applied to the animals equipped with this device. Viani [77] developed a radar-
based wildlife road-crossing early alert system that can successfully detect wildlife within 16 
meters to the radar with a short reaction time (about 1 second). Like thermal cameras, the field of 
view of radar is also limited. Among these methods, advanced cameras and Light Detection and 
Ranging (LiDAR) sensor can capture objects within 100 meters with 360° field of view at any 
light conditions. Several algorithms have been conducted to classify wildlife and detect wildlife 
crossing using 3D roadside LiDAR [78]. 

This study introduces a new 3D-roadside-LiDAR-based conflict analyzing technology. It 
automatically captures all the wild horse and vehicle moving trajectories, distinguish wild horse 
road crossing events and determine the corresponding crossing area, wild horses’ crossing 
trajectory, and crossing time information, then check every vehicle by comparing the time of the 
vehicle passing the crossing area with the crossing time of the wild horse to determine whether the 
vehicle is yielding to the wild horse or not, finally generating yield rate for each crossing event.  
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Methodology 

After objects are classified and tracked, the trajectory data for wild horses could be extracted from 
the dataset. Crossing events can be determined by checking if the wild horse's trajectory intersects 
with the road zone. Once a crossing event is detected, as Figure 12-1 shows, the place within 30ft 
from the edge of the road is defined as a "waiting zone." Where the wild horse trajectory intersects 
with the road is defined as the horse's crossing zone. The algorithm will automatically record the 
time when the wild horse arrives in the waiting zone, when it starts to cross, and when it ends 
crossing. The time the wild horse arrives in the waiting room is the first time frame the wild horse 
was detected in the waiting room. The start-crossing time is the last time frame the wild horse was 
detected in the waiting room. The end-crossing time is the start-crossing time plus the crossing 
time of the wild horse computed by the tracking algorithm. 

 
Figure 12-1 Crossing zone and waiting zone for crossing event 

Based on the crossing zone obtained from the previous step, each vehicle is analyzed separately to 
checked whether this vehicle is relevant to any crossing events. For each crossing zone, the vehicle 
can either: pass through the zone before the wild horse crossing, pass through the zone during the 
wild horse crossing, or pass through the zone after the wild horse finish crossing. 

𝑉𝑉𝑅𝑅 < 𝐻𝐻𝑓𝑓𝑖𝑖𝑡𝑡  

𝑉𝑉𝑅𝑅 ∈ [𝐻𝐻𝑓𝑓𝑖𝑖𝑡𝑡 ,  𝐻𝐻𝑓𝑓𝑖𝑖𝑡𝑡]  

𝑉𝑉𝑅𝑅 ∈ [𝐻𝐻𝑓𝑓𝑡𝑡𝑥𝑥  ,  𝐻𝐻𝑓𝑓𝑡𝑡𝑥𝑥 + 𝑋𝑋𝑗𝑗�           (1) 

𝑉𝑉𝑅𝑅 < �𝐻𝐻𝑓𝑓𝑡𝑡𝑥𝑥 + 𝑋𝑋𝑗𝑗 ,𝑇𝑇𝑗𝑗  �           

𝑉𝑉𝑅𝑅 > 𝑇𝑇𝑗𝑗 
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Equation 1 illustrates the five temporal relationships between a vehicle i and the crossing event j. 
𝑉𝑉𝑅𝑅 is the time frame for vehicle i to pass through the crossing zone. 𝐻𝐻𝑓𝑓𝑖𝑖𝑡𝑡𝑗𝑗 is the first time frame 
for the wild horse of crossing event j arrives at the waiting zone. 𝐻𝐻𝑓𝑓𝑡𝑡𝑥𝑥𝑗𝑗 is the maximum time frame 
of the wild horse of crossing event j leaving waiting room, which is also the time frame for the 
wild horse to start crossing. 𝑋𝑋𝑗𝑗 is the crossing time for the crossing event j. 𝑇𝑇𝑗𝑗 is the time the queue 
caused by the crossing event has been cleared.  

If the time for vehicle i to pass through the crossing zone is earlier than the time wild horse j arrives 
in the waiting zone, which means the vehicle i is not relevant to the crossing event j. If the vehicle 
i pass through the crossing zone after the wild horse j arrives in the waiting zone before the wild 
horse start to cross, the vehicle i will be defined as "non-yield" to the wild horse j.  The vehicle is 
defined as "non-yield" if the vehicle passes through the crossing zone during the wild horse 
crossing. For the vehicle leaving the crossing zone after the wild horse finishing crossing, if the 
vehicle is earlier than 𝑇𝑇𝑗𝑗, it will be defined as "yield to the wild horse j"; otherwise, it is not related 
to the wild horse j. The schematic diagram is shown in Figure 12-2. This algorithm will keep 
cycling until all vehicles are checked for each crossing event. 

 
Figure 12-2 Five-phase diagram about how to determine if a vehicle i is yield to wild horse j 

Case Study 

The pilot site was selected at the USA Pkwy & Pittsburgh Ave intersection in Sparks, Nevada, 
USA. The historical data and field observation shows that there exist wild horses activities. The 
team of the University of Nevada, Reno, deployed the LiDAR sensor at the east side of the 
intersection on a trailer. The LiDAR is powered by four solar panels and a wind turbine, which is 
shown in Figure 12-3 (a). Extra energy will be stored in a battery which is used when there is no 
sunshine or wind. The installation location and the geometric information of the site are shown in 
Figure 12-3 (b)below. A pond is located east of the intersection, attracting the surrounding wild 
horses to drink water there.  
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Figure 12-3 Trailer for data collection(left) and Top view of the site and the location of the 

LiDAR (Right) 

The main road of this intersection is a two-way-two-lane rural road with a speed limit of 
45 MPH. The minor road leads towards an industrial factory. After the LiDAR data processing, 
the volume for the site is generated. Since the volume for the minor road is not significant, the 
minor road is not considered in this study. Figure 12-4 shows the one-week volume of the main 
road from Saturday, 11/17/2019 0:00 to Friday, 12/13/2019 24:00.  

Figure 12-4 30-min Volume for each bound 
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Wild horse crossing events detection 

Through the horse crossing detection algorithm, the horse crossing events were extracted. There 
were 14 crossing events detected at this site from November 17th to December 18th. Table 12-1 
shows the general information of the crossing event, including the date and time, the number of 
horses in one crossing event, and the total crossing time. The date and time are the time the first 
horse starts crossing. The crossing time is the time difference between the first horse start crossing 
and the last horse finish crossing. Figure 12-5 shows the crossing time for each crossing event over 
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different numbers of horses for each crossing event. It shows that as the number of horses crossing 
at the same time increases, the average crossing time increases as well. 

Table 12-1 Wild horse crossing events captured from LiDAR 

Crossing Event Date and 
Time 

Number of horses 
crossing  

Crossing time 
(sec) 

11/18/19 1:32 PM 4 36.3 
11/18/19 1:48 PM 3 24.1 
11/18/19 3:11 PM 4 28.6 
11/18/19 3:13 PM 5 46.8 
11/23/19 2:58 PM 5 45.5 
11/23/19 3:08 PM 1 24.3 
11/23/19 3:20 PM 1 20 
11/24/19 1:36 PM 5 33.8 
11/24/19 5:29 PM 5 24.9 
11/25/19 4:57 PM 9 64.3 
11/25/19 12:51 PM 5 79.7 
12/17/19 3:04 PM 9 31.3 

12/18/19 10:01 AM 3 26.6 
12/18/19 1:09 PM 5 50.5 

 

Figure 12-5 Crossing time over number of horses for each crossing event 
 

Yield analysis 

Figure 12-6 shows an output example of crossing event at 3:11 PM, 11/18/2019.  Each 
point represents one vehicle, the x coordinate is the time frame it passes through the crossing zone 
(Vi), the horizontal coordinate is the average speed of the vehicle. This scatter plot meets the 
expectation that the average speed of vehicle yield to the wild horse are significantly lower than 
the vehicles which didn't yield to the wild horse.  
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Figure 12-6 Example Crossing event (11/18/2019 3:11PM) 
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Table 3 shows all detected wild horse crossing events and their associated yielding and non-
yielding vehicles and gives the yield rate for each event. The results show that almost all wild 
horse crossing events (13 out of 14) impact the passing vehicles. The result of yield rates reflects 
that it is ubiquitous for vehicles to choose not to yield to wild horses, which shows certain safety 
hazards on this road. Non-yielding vehicles may arouse the wild horse's unexpected reaction due 
to the distance being too close, thereby increasing the possibility of traffic accidents happens. 

Table 12-2 Yield rate for each crossing event 

Crossing Event Date and Time  Number of yielding vehicles Number of no-yielding vehicles Yield rate 
11/18/19 1:32 PM 6 0 100.00% 

11/18/19 1:48 PM 7 8 46.67% 

11/18/19 3:11 PM 8 5 61.54% 

11/18/19 3:13 PM 9 1 90.00% 

11/23/19 2:58 PM 8 13 38.10% 

11/23/19 3:08 PM 0 0 NA 

11/23/19 3:20 PM 0 7 0.00% 

11/24/19 1:36 PM 2 0 100.00% 

11/24/19 5:29 PM 0 3 0.00% 

11/25/19 12:51 PM 7 2 77.78% 

11/25/19 4:57 PM 17 8 68.00% 

12/17/19 3:04 PM 5 1 83.33% 

12/18/19 10:01 AM 4 0 100.00% 

12/18/19 1:09 PM 2 3 40.00% 
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13. AUTOMATIC COUNT TRIP GENERATION WITH LIDAR 
Transportation planning based on historical data and methods have major limitations. Trip data 
can be useful to increase transportation safety of the specific sites and the process and 
programming purposes. One of the challenges in this regard is data collecting to gain accurate 
analysis of land used development. The previous methods of data gathering such as human 
observational data counting and automatic methods like pneumatic tubes and video camera suffers 
some limitations affect the accuracy of trip analysis which cause over mitigating or set some wrong 
rules and regulations. LiDAR sensing is yet to be further explored in trip generation, especially for 
the purpose of business development. This study is an initial attempt to: 1) perform a LiDAR-
based trip generation data gathering for a business location, and 2) analyze the resulting data based 
on the GIS software to develop a systematic business plan for the case study and beyond.  

In the recent years urban areas more and more need to control the conditions of multimodal trips 
to keep the cities livable and sustainable. Transportation planning plays a pivot role in this matter 
to set regulations and address some methods to mitigate the impact of automobiles in urban areas.  

Thus, travel impact analysis is needed to choose the mitigation compatible with the level of impacts. 
Consequently, trip data for land use development and analysis the multimodal trip is essential and 
recently many researchers have been studying different aspects of this subject. For instance, trip 
data pattern was used for bike-sharing system users(2), to avoid the crowds and offer travelers 
more individualized travel plans(3), impact analyses for affordable housing development(4), in  
urban development area such as site design, scaling or scoping development, traffic consequences, 
system development charges, impact fees, emissions estimates, and even regional travel demand 
modeling(5). 

Trip data also can help other organizations, especially those related to government, to increase 
transportation safety of the area and the process that leads to decisions on transportation policies 
and programs purposes (6). One of the most important function in creating a transport impact 
assessment (TIA) for a site, chosen to be developed, is to estimate the probable number of trips in 
that site. Trips that are created at a site refers as a trip generation (7)(8) and the goal of trip 
generation is to forecast the number of trips generated by and attracted to each zone in a research 
area based on their purpose. The number/frequency of trips is calculated by linking person, zone, 
and transportation network parameters to the number/frequency of journeys. Trip generation 
estimate is considered to be the most essential input for a TIA as it provides the data about the 
transport impact in a new site and what is needed to control those impacts(9). Vehicle trip 
generation has been used in traffic mitigation, which is estimation of system development or 
impact cost (providing improvements in network capacity and demand) and transportation utility 
cost (accommodating cost of operation and maintenance).  

Trip generation can also be used to evaluate the safety of the nonmotorized modes of travel areas 
(10). However, lack of information may lead planning and design to wrong mitigation which has 
unintentional outcomes for the site(8). Multimodal trip counts data is the process of collecting the 
necessary information regarding the trips made by any transport mode in a site, i.e., 
(non)motorized, and is the best possible way to manage the probable impacts that can occur in that 
site.  
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This data can be collected manually, e.g., observing a site by an individual who counts the entering 
and exiting or by questionnaire survey (11). Schneider et al.(12) for their study of trip generation 
and smart growth, used door counts-and-intercept surveys. Each survey includes 10 questions 
regarding the mode, time of day, destination, and origin. Kristina M. Currans et al.(4) was counting 
the number of people and motorized vehicle manually at 26 sites through the visual observation 
and individuals who were temporary workers and trained by members of research team. Reid 
Ewing et al. gathered their data through counts and survey by using urban planning students. Forty- 
eight students from PSU at a one-day cost of almost $12,000 and twenty-four students from 
University of Utah with the cost of almost $6000. Also, automatically data collecting are prevalent 
among researcher, e.g. using installed video camera in the desired location in order to collect the 
pedestrians and vehicles trip data(13), pneumatic tubes which are made of stretched hallow rubber 
tubes across a section of road to collect vehicles count data. The tube is connected to a traffic 
counter on one end and plugged on the other to avoid air leakage as a vehicle passes through, 
pneumatic tubes(14), and etc. (9). The process of counting the number of people entering and 
exiting a site to estimate the related demand of a new development, estimates the “new trips”, and 
provides an estimation of total impact that helps for a better assessment of the future travels at the 
new site (15).  

From various methods to collect multimodal trip generation data, namely manual/automatic 
vehicle/person counts (16), intercept survey (17)(18)(19), household travel survey (20)(21)(22), 
and workplace/school travel survey (23)(24)(25), each has some disadvantages. For instance, the 
major limitations in manual counts are the capture rate, the biased perception of the surveyors, and 
the cost-effectivity of the process itself, especially for long-term periods. On the other hand, 
automatic methods such as pneumatic tubes are not cost-effective for short-term periods, and 
several automatic counters might be required to complement information acquired from other 
methods. Video cameras are limited by the light conditions. All in all, most methods suffer from 
inability of obtaining; trajectory-level data, and accurate detection and tracking of pedestrians and 
vehicles(9).One of the major issues in trip generation assessments in the United States is that 
majority of agencies use the Institute of Transportation Engineering (ITE) guideline as a reference 
to provide the required estimation for land use development (11)(26). However, such guidelines 
have been shown not to be compatible by empirical data through several studies.  

In the recent studies (1, 21-26) LiDAR is one of the trending methods in the field of transportation 
is Light Detection and Ranging (LiDAR) sensors which can include connected vehicles, traffic 
data collection, and auto-driving. Compare to the past methods LiDAR can cover a much wider 
detection range, has a finer resolution, and it can scan a 360º horizontal range and is able to detect 
the direction of arrival as well as the number of vehicles accurately (1)(27). Therefore, this method 
can detect information about the precise position of objects without being impaired by the light 
condition. By gathering real-time accurate position data for all road users, the LiDAR sensors can 
produce high-resolution traffic data (HRMTD) (28).The output of LiDAR can be divided in 5 
categories: motorcycle, passenger, car, pickup or van, single unit truck or bus tractor-trailer (29). 
This method is very time saving to check the type of travelers coming and exiting and using a site 
and can be used for further analysis in transportation planning. The LiDAR sensors can be installed 
temporarily for short-time data collecting or permanently on roadside structure for long-term.  

https://www.sciencedirect.com/science/article/pii/S0264275119307048?casa_token=t4bi-o7_Q7gAAAAA:M2s3U-N_Jl-WJetCXTvqG81iJl-ZLIIjr0INuHEaYZ12FJgUpM8QbGiIRf3aW_pLU_ObTFYJqA#!
https://www.sciencedirect.com/science/article/pii/S0264275118310849?casa_token=gERTsMrOaPAAAAAA:Zwrq60imaDKioRe_aOCvBimfFvZ0X1bjWsSKQQjEqsnniaGUQbFovXyjXubXGPJfHURFKtZ9iQ#!
https://www.sciencedirect.com/science/article/pii/S0264275118310849?casa_token=gERTsMrOaPAAAAAA:Zwrq60imaDKioRe_aOCvBimfFvZ0X1bjWsSKQQjEqsnniaGUQbFovXyjXubXGPJfHURFKtZ9iQ#!
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In this study, an enhanced data collecting method for trip generation was used to analyze the 
number of pedestrians, bicycles and public transits and vehicles that are generated for a specific 
location, i.e., CITIGAS gas station/store in Reno (Error! Reference source not found.3-1). For 
data extracting information from the raw LiDAR data, GIS software was used and data 
visualization for this method can be found in this paper. The rest of this paper is organized as 
follows: in the next section LiDAR device that used for data collecting is introduced. Then the 
data processing from raw data and GIS data analyzing method has been described. Subsequently 
we discussed the results obtained from GIS trajectories for each zone related to the case study in 
this research for 24 hours data that gathered by LiDAR. Finally, we conclude the results of this 
study and its benefits from the business owner point of view and propose suggestion for the future 
research. 

 
Figure 13-1. The location of the studied gas station/store (a), and the utilized LiDAR equipment 

installed in the northern part of the gas station/store (b) 

The LiDAR sensor was set up on a roadside in the northern part of the gas station/store where the 
maximum signal can be received from all three accesses (Figure 13-1. b). The approximate height 
of the equipment was about 9 feet above the ground that is an optimized value based on our 
previous studies(29). The gas station was divided into six zones, each of which having one gas 
pump to monitor each pump separately. The number of entrances and exits from each access was 
separately monitored and counted for pedestrians and vehicles to distinguish the contribution of 
each into the business. At first raw data which was obtained for 24 hours data from 12:00 am 
6/5/2021 until 23:00 pm 6/5/2021, processed and transformed to 3D space based on their 
coordinates XYZ. The data include XYZ position of points in each object, distance to LiDAR, 
tracking ID, frame number (timestamp), lane ID, velocity, and direction(33). Using ARC GIS 
desktop and Arc GIS Pro for define zone at each entrances and gas pumps and store building to 
find out the object clustering based on the DBSCAN method(29).Then by using GNN method we 
can track each type of object which are pedestrians or vehicles using the site. 

After the processing LiDAR data is finished, trajectory data is ready for using in the ARC GIS 
Desktop, based on the location that we want to study. We defined some zones in GIS for the 
entrances, gas pumps, store building at the site. Based on the trajectories in the zones in GIS, 
directional information was obtained for each type of object to find the entering and exiting 
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vehicles and pedestrians. Then, for finding the angles of direction for entering and exiting, raw 
data of LiDAR was watched by VeloView software based on the XYZ of each object that has 
unique object ID we can track the specific object and find its location. In the next step, the total 
number of pedestrians and vehicles counted based on half hour data and classification of object 
that captured by LiDAR until they leave the detection zones.  

 

RESULTS AND DISCUSSION  
After data analysis was done by GIS for 24 hours data and visualized in line chart for each three 
entrances for pedestrians and vehicles. For evaluating the accuracy of this data analysis, four 
different half hour data was picked to count the manual data and compared to GIS trajectories data 
analytics. The accuracy level reached to 95% for vehicles and 93% for pedestrians that verified 
our proposed method. Line chart of 24 hours data for Ent 1. Located at Burn St. is shown in Figure 
13-2. 
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Figure 13-2. Twenty-four hours data visualization for Ent1 (a) for vehicles (b) for 

pedestrians 

The results are presented within four temporal courses (each half an hour) when the 
maximum number of entering and exiting trips is counted (i.e., peak hours). It was expected to 
observe an overall balance between entering and exiting trips into the site within 24 hours and that 
is what the results indicate. However, this balance does not necessarily exist within different peak 
hours and for different accesses (Figures 13-3 – 13-5). For instance, the results indicate that the 
accesses from Holcomb Avenue and Virginia Street are more regularly used as an entrance access, 
while that from Burn Street is more regularly used as an exit access for both pedestrians and 
vehicles. Assuming that this result will be validated with a longer course of data acquisition (>> 
24 hours), a beneficial business strategy is to set up more advertising signs and banners in the 
entrance accesses (i.e., Holcomb Ave and Virginia St).   
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Figure 13-3. The entering and exiting trips at the Holcomb Ave drive way 

 

 
Figure 13-4. The entering and exiting trips at the Burn St drive way 
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Figure 13-5. The entering and exiting trips at the Virginia St drive way 

Also, in case there is a traffic loading in the business site, the exiting access (i.e., Burn Street in 
this case) could be widened to unload the traffic. A lasting trip of a pedestrian is an indicator of 
the contribution of the store into the business, while that of a vehicle could be an indicator of the 
contribution of the store and/or the gas station into the business. This suggests allocating more 
store related advertising signs to Holcomb Avenue, where the number of the entering trips by 
pedestrians is always more than the existing ones within the peak hours, except for 11-11:30 am 
when those numbers are equal. With an average of ~ 8 vehicles per half an hour, the access from 
Holcomb Avenue attracts more gas customers within the peak hours, 13-6. This is also evident 
from Figure 13-7. a, where pump 6, which is the closest one to Holcomb Avenue, is shown to have 
the maximum usage averaged over all four peak hours. This can be justified by the lower density 
of gas stations in Holcomb Avenue.  
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Figure 13-6 Gas pumps at the studied gas station 

 
Figure 13-7. The Gas Pump’s Usage for Six pumps(a), The Peak Hour Pump Usage(b) 

 
Figure 13-8 indicates only ~ 30 % of pedestrians and ~ 25 % of vehicles entered the 

business site for the purpose of using the store. In general, this suggests that the gas station has the 
major contribution in trip attraction for the business assuming that vehicles do not solely pass 
through the gas station.  
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Figure 13-8. The percentage of Vehicles out of Total Number of Travelers in the Gas 
station(a) The percentage of Pedestrians out of Total Number of Travelers in the Gas 

station(b) 

 
In average, the gas station/store has the greatest number of customers (pedestrians and 

vehicles) and maximum gas pump usage at 7-7:30 pm, for which a higher concentration of supplies 
and staffs is suggested. 9-9:30 am and 11-11:30 am are closely the next contributors. The trip 
trajectories of pedestrians and vehicles within these three time periods are for the gas station/store 
and its neighborhood. There is a great potential of attracting more vehicles (blue trajectories) and 
pedestrians (yellow trajectories) from Burn and Virginia Streets, respectively, within the peak 
hours.  
 

 
Figure 13-9. GIS Trajectory for Pedestrians and Vehicles Based on LiDAR Data 
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14. CONNECTED AND AUTONOMOUS VEHICLES 
While LiDAR sensors make it possible to locate vehicles and pedestrians accurately, they would 
contribute to CV systems in the mixed traffic environment - connected and non-connected. At the 
same time, a CV communication platform is needed to transfer high-resolution data from roadside 
LiDAR on mobile devices. Aiming to answer this question, the University of Nevada, Reno has 
been developing a new generation connected-vehicle system enhanced by roadside LiDAR sensors.  
As a parallel component of the systematic development, this work is to develop a communication 
framework that serves the connected-vehicle applications with the roadside LiDAR sensor data. A 
roadside system named DSRC-Bluetooth communication and mobile application with LiDAR 
sensor (DBCMA-LS) was designed to stream LiDAR data, package and transfer DSRC basic-
safety messages (BSM) via dedicated short-range communications (DSRC). On the other hand, an 
onboard system was developed to receive, decode the DSRC messages, transfer decoded 
information through Bluetooth and visualize the LiDAR data in a smart phone application. In this 
proposed CV communication network, the overall performance of DSRC-Bluetooth 
communication was analyzed according to packet delay and packet-dropping probability. The 
analysis provided suggestions for the design of V2X data packets communicated through the 
complex DSRC-Bluetooth multi-hop environments.  

System structure 

The DBCMA-LS aims to feed roadside LiDAR data to the connected-vehicle applications. The 
target system consists of two parts: the DBCMA-LS RSU framework and the DBCMA-LS OBU 
framework, as shown in Figure 1. Primary functions of DBCMA-LS include: 

1) collecting data from different sources such as connected traffic participants, traffic 
signals, and roadside LiDAR sensors,  

2) formatting data into the standard basic safety messages (BSM) and signal phase and 
timing messages (SPaT) (9),  

3) transfer data from RSU to OBU via DSRC network and from OBU to mobile devices via 
Bluetooth network,  

4) dividing encoded BSM or SPaT into sub-packets to achieve efficient transmission 
between onboard DSRC devices and mobile devices through Bluetooth communication, 

5) regrouping and unpacking BSM or SPaT sub-packets in the mobile application, 
6) visualizing the real-time status of other traffic participants and providing a safety alerting 

service on mobile devices. 
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Figure 14-1. DBCMA-LS system structure 
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DBCMA-LS RSU framework 

The RSU framework is DBCMA-LS’s core component. It is linked to a commercially available 
DSRC roadside unit (RSU) that broadcasts and receives DSRC packets through the V2X 
communication network. Within the framework, the data collection module, data processing 
engine, and packet processing engine were implemented in the Next Unit of Computing (NUC) 
computer (10) (Figure 2). The NUC computer with the DBCMA-LS RSU framework can be 
deployed into the traffic cabinet at an intersection, linked with a traffic signal controller, LiDAR 
sensors, and DSRC devices via Ethernet cables. 
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Figure 14-2. Modules in the DBCMA-LS RSU framework 
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Data collection module 

A data collection module with several standard application-programming interfaces (APIs) was 
developed to extract data from different data sources. It reads traffic signal timing data from the 
traffic signal controller via Ethernet connection based on the National Transportation 
Communications for ITS Protocol (NTCIP). The data collection module streams High-resolution 
LiDAR data from the roadside sensors via Ethernet based on a custom API. The module also 
gathers connected-vehicle data from the DSRC network. 

Data processing engine 

Once data from different sources are received, the data are processed by a data processing engine, 
and then converted to standard BSM or SPaT messages. The real-time traffic signal timing data is 
encoded to SPaT messages. The high-resolution LiDAR point data is first pre-processed in the 
object-tracking module with the steps of background filtering, object clustering, object recognition, 
and object tracking. In the next step, information of traffic participants extracted from LiDAR 
sensor data or received from the DSRC network (information from connected vehicles) is merged 
in the data fusion module. Finally, the combined information of all traffic participants is encoded 
as BSM messages. It needs to be noted that a local database in the NUC computer is used to archive 
historical data for debugging and research purposes. 

Packet processing engine 

Compared to the traditional traffic sensors, 360-degree LiDAR sensors can detect and track traffic 
participants such as vehicles, bicycles, and pedestrians in a large area with a high frequency and 
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accuracy.  The comprehensive traffic data from LiDAR need to be broadcast in real time; the 
information broadcasting can be challenging especially when a large number of participants are 
detected. As previously described, the encrypted SPaT and BSM messages are to be transferred 
via DSRC/Bluetooth communication by the user datagram protocol (UDP). A UDP packet needs 
to go through at least two hops to reach the destination: one hop in the DSRC network and the 
other hop in the Bluetooth connection. It is known that the bandwidth decreases and packet loss 
rate increases in a multi-hop environment, so data packets need to be processed in the packet-
processing engine to ensure the communication performance of the system. Especially for the 
Bluetooth network, data packets are divided into smaller sub-packets to meet the bandwidth of the 
Bluetooth connection. A model is developed to adaptively determine the best broadcasting 
frequency for sub-packets, which will be discussed in Section 3. 

 

2.3. DBCMA-LS OBU framework 

In a connected vehicle, the DSRC OBU device receives the real-time SPaT and BSM messages; 
then the OBU device forwards the messages to a mobile device (smart phone or tablet) via the 
Bluetooth connection (Figure 14-3). The OBU is installed in a vehicle or held by a pedestrian, 
the Bluetooth communication distance between the OBU and the mobile device is in a short 
range. A packet resolving engine implemented in the mobile app regroups the sub-packets, 
decrypts the data and decodes it to real-time status of traffic participants and traffic signal. The 
mobile app finally visualizes the received information.  

 

 
Figure 14-3. Modules of DBCMA-LS OBU framework 
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At the same time, the application also offers the safety alerting service to warn drivers with 
possible collision risks, which is a typical collision-avoidance application. It should be noted that 
connected-vehicle built-in sensors such as GPS/Magnetic/Gyro could be used by the application 
to help determine the position and direction of the connected vehicle. 

Data visualization 

Data visualization helps users understand the real-time traffic situation received from 
infrastructures and other road users. A map view is designed to display the user’s vehicle and the 
vehicles and pedestrians surrounding. The user can see the general distance information from 
displayed distance circles. The zoom and move features of the interface make it possible to show 
traffic participants in the remote area (this function can be disabled to avoid the distraction of 
drivers). The real-time traffic signal timing status is displayed at the top-right corner of the 
screen as a countdown signal head.  

Safety warning service 

Presenting warning messages to the driver without causing distractions from a potentially 
hazardous situation is paramount to the success and safety of a CV system. The BSM messages, 
produced by both LiDAR sensors and other connected vehicles, are essential to traffic safety 
applications. In this module, the paths of surrounding vehicles can be predicted according to 
historical trajectories, speeds, and directions. Then the collision model will classify the collision 
risk and pop a warning message to drivers by displaying it at the bottom of the screen if any 
collision is predicted. 

Implementation of the DBCMA-LS RSU framework at an intersection 

A pilot DBCMA-LS system was built at a signalized intersection, 15th ST and N. Virginia ST, 
Reno, Nevada, to detect/track the vehicles and pedestrians and provide safety information at the 
intersection (Figure 14-4). Two LiDAR sensors are placed at the intersection to cover the four 
legs of the intersection. The parameters of the LiDAR sensor in the system are given (Table 14-
1). The NUC computer was housed in the traffic signal controller cabinet. High-resolution 
roadside LiDAR data was first processed and then broadcasted via the DSRC RSU device at the 
intersection. It should be noted that multi-hop transmission in DSRC network is not allowed due 
to authentication. In this paper, the multi-hop transmission system means the hop between DSRC 
and Bluetooth network. 
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Figure 14-4. Implementation of the pilot DBCMA-LS RSU framework 
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Table 14-1. Basic Parameters of LiDAR Sensor for DBCMA-LS 

Parameter  Performance 

Measurement Range Up to 300 (feet) 

Field of View (Horizontal) 360 (°) 

Field of View (Vertical) +15.0(°) to -15.0(°) (30°) 

Rotation Rate 20 (Hz) 

 

The LiDAR data provide the comprehensive status of all road users at the intersection. A 
data dictionary presented in Table 14-2 describes the status information of each traffic participant, 
which is extracted from LiDAR data and broadcasted by the DSRC RSU devices. The data 
dictionary could be used as a starting point for NTCIP standardization. 
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Table 14-2. Data Dictionary from LiDAR 

Data Name Description Format 

ObjectID Target ID for tracking an object int32 

ObjectType Object type: Vehicle, Pedestrian, Bicycle, Wildlife, 
Obstacle, Other 

enum 
(byte) 

TimeStamp Date and time stamp of the record datetime 

Object_Length Object length, in Feet float 

Object_Width Object width, in Feet float 

TrackPointType Track point type: CP (center point), FR(front right corner), 
RR(rear right corner), FL(front left corner), RL(rear left 
corner) 

enum 
(byte) 

Coord_x X value of local coordinate of track point, in Feet float 

Coord_y Y value of local coordinate of track point, in Feet float 

Coord_z Z value of local coordinate of track point, in Feet float 

Coord_dir Direction of polar coordinate degrees (0-360) of track 
point 

float 

Coord_dis Distance to the center of polar coordinate, in Feet float 

Longitude Longitude of track point, in wgs84 system float 

Latitude Latitude of track point, in wgs84 system float 

Elevation Elevation of track point, in Feet float 

Direction Direction of target movement, in degree 0-360 float 

Speed Speed of target movement, in MPH float 

 

Implementation of the DBCMA-LS OBU framework  

The DBCMA-LS RSU framework pilot system was implemented including the DSRC OBU 
device and an Android device with an implemented application (Figure 14-5). The implemented 
onboard system received information of vehicles and pedestrians around this intersection; then, it 
displayed those road users on the map view of the Android application. The map is always 
centered at the location of the device so that user can monitor the surrounding traffic participants. 
Users can zoom in/out and pan the map to view the distant objects. On the top of the view, a 
countdown traffic signal head displays the real-time signal status of the next intersection in front 
of the user. The warning message can be displayed at the bottom of the screen. 
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Figure 14-5. Implementation of the DBCMA-LS OBU framework on an Android device 
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Test results for platform performance 

The end-to-end packet delay and the packet-dropping probability of the implemented DBCMA-
LS system were tested in the field. In the test cases, packets of different sizes ( L ) were 
transferred. Different packet intervals ( I ) of sub-packets were used to seek the optimal 
communication performance of DBCMA-LS. The interval between two packets was long enough 
so that packages were not affected by each other. The end-to-end packet delay ( De2e (L, I ) ) was 
counted by the time difference between the current GPS time on the Android device and GPS 
timestamp in the BSM message. The end-to-end packet-dropping probability ( pe2e (L, I ) ) was 
calculated by dividing the number of successfully resolved packages by the total number of 
packages. 
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Figure 14-6. End-to-end packet delays of DBCMA-LS with different packet interval and 

size 

As shown in Figure 14-6, end-to-end packet delay increased with the increase of packet 
size. The fluctuation of the 3D surface indicates that the delay is random in the DSRC/Bluetooth 
network. When the packet interval is less than 20 (ms), communication becomes congested with 
the larger packet size, which results in a rapid increase of delay. 
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Figure 14-7. End-to-end packet-dropping probabilities with different packet interval and 
size 

As shown in Figure 14-7, the packet-dropping probability was at a relatively low value (16), 
which means the overall communication stable. When the packet interval is less than 20 (ms), 
the packet-dropping probability increases, which means the reliability of the communication is 
degraded.  On the other hand, with the rise of packet interval and packet size, the sub-packet may 
be affected by the next packet, which results in the rapid increase of packet-dropping probability. 

 

The testing results show that the optimal communication performance of DBCMA-LS is 
reached when the packet interval is between 20 and 40 (ms); in fact, the best packet interval is 
chosen as Î =30 (ms). As the result, the end-to-end equivalent packet delay 
( D̂nL (LS , Î ) ) is given in Figure 8. 

n=1,Ls=E[L]
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Figure 14-8. End-to-end optimal equivalent packet delays of DBCMA-LS 

The maximum equivalent packet delay of DBCMA-LS sending a packet within 8 (MB) 
is less than 200 (ms) (Figure 8). Since the data size for a traffic participant from LiDAR can be 
estimated as 62 (byte) (Table 3), the delay is small enough for DBCMA-LS to provide collision-
warning messages in the test case. In theory, at most 132 detected traffic participants can be 
transferred within the given delay. 

 

5. CONCLUSION 

In this paper, a CV system named DSRC/Bluetooth communication and mobile application with 
LiDAR sensor (DBCMA-LS) is proposed for collecting roadside LiDAR data, packaging and 
transferring messages to mobile devices. A smart device application was developed to receive 
and visualize data from other connected-vehicles and roadside LiDAR sensors. The 
communication performance of DBCMA-LS was analyzed by testing packet delay and packet-
dropping probability. The core parameters of the system were determined for the optimal 
performance. Test results indicate that appropriate packet interval allows the DBCMA-LS to 
transmit high-resolution data extracted from roadside LiDAR and to serve connected-vehicle 
applications. 
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In this implemented system, the overall performance of DSRC-Bluetooth 
communication was tested, which recommended packet size and interval. This study also 
provides an example for evaluating V2X applications in a complex DSRC-Bluetooth multi-hop 
environment. This study approves the feasibility of using the roadside LiDAR data to serve 
connected-vehicle applications. One possible future work is to study the inter-influence between 
high-frequency packets in DSRC/Bluetooth network and bring out a better packet processing 
method to reduce this impact. Based on DBCMA-LS, more CV applications can be proposed to 
improve traffic safety and efficiency. It should be mentioned that the BSM content in this study 
was adjusted from the standard BSM, which was to transfer the comprehensive information from 
the roadside LiDAR sensors. However, the BSM has been patented, so that future work is to 
choose or design a more appropriate message format for the system. 

 

 

test 
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15. CONCLUSION  
Roadside LiDAR sensing technologies have been well developed and tested in the past few years. 
Hardware and software solutions are mature and market-ready. The roadside LiDAR components 
introduced in this report are not the only solution but demonstrate the key components, functions, 
and performance requirements to be considered. Installation influences the accuracy and reliability 
of LiDAR data, and it may also change the deployment costs by knowing an optimized installation 
can provide more extended effective detection ranges. The knowledge of installation height and 
angle’s impact on sensing quality will support engineers and technicians in designing, installing, 
operating, and maintaining roadside LiDAR systems. Understanding how traffic flow rates or 
levels of service can change traffic occlusion rates, decision-makers and system designers can 
predict the roadside LiDAR system performance and provide the optimized sensor deployment 
design for the planned service periods. 

LiDAR sensing is impacted by inclement weather, but it offers the same high-quality sensing data 
without the impact of light conditions, which is critical for both urban and rural traffic safety and 
smart traffic control. While weather’s influence on LiDAR sensors is determined by physics, the 
data processing algorithms can address the impacts of different weather conditions and maximize 
sensors’ capability. There is considerable published research on using customized algorithms or 
algorithm parameters for LiDAR sensors in different weathers. An automatic method of 
intelligently knowing the current weather condition through received LiDAR cloud points was 
developed in this project. It can be the controller for a smart system to automatically select the best 
algorithms and parameters based on environmental conditions. 

To obtain all-road-user trajectory data, researchers and engineers mainly consider two sensor types 
– video and LiDAR. This project evaluated a video sensing solution on the market and the project 
team’s LiDAR solution that can be a valuable reference for the audience considering the two 
technologies. The test details can help with evidence-based decisions. 

While roadside LiDAR sensing has been exciting researchers, its real-world applications are 
interests of most agencies and industries. This project presented multiple roadside LiDAR 
applications, including data applications, smart-and-connected traffic signals, and connected-and-
autonomous vehicles. While the real-time smart traffic signal system and connected-and-
autonomous vehicle solutions are still pilot projects, roadside LiDAR is a ready-data solution to 
fill today’s traffic plan, design, and engineering data requirements and gaps. 
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